已知M=,β=,計(jì)算M5β.
解:矩陣M的特征多項(xiàng)式為f(λ)==λ2-2λ-3.
令f(λ)=0,解得λ1=3,λ2=-1,從而求得對(duì)應(yīng)的一個(gè)特征向量分別為α1=,α2=.
令β=mα1+nα2,則m=4,n=-3.
M5β=M5(4α1-3α2)
=4(M5α1)-3(M5α2)
=4(λα1)-3(λα2)
=
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知雙曲線(xiàn)x2-=1的左頂點(diǎn)為A1,右焦點(diǎn)為F2,P為雙曲線(xiàn)右支上一點(diǎn),則的最小值為_(kāi)_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(1)設(shè)x≥1,y≥1,證明x+y++xy;
(2)1<a≤b≤c,證明logab+logbc+logca≤logba+logcb+logac.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
如圖所示,四邊形ABCD和四邊形AB′C′D分別是矩形和平行四邊形,其中各點(diǎn)的坐標(biāo)分別為A(-1,2)、B(3,2)、C(3,-2)、D(-1,-2)、B′(3,7)、C′(3,3).求將四邊形ABCD變成四邊形AB′C′D的變換矩陣M.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知直線(xiàn)C1: (t為參數(shù)),C2: (θ為參數(shù)).
(1) 當(dāng)α=時(shí),求C1與C2的交點(diǎn)坐標(biāo);
(2) 過(guò)坐標(biāo)原點(diǎn)O作C1的垂線(xiàn),垂足為A,P為OA中點(diǎn),當(dāng)α變化時(shí),求P點(diǎn)的軌跡的參數(shù)方程,并指出它是什么曲線(xiàn).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com