【題目】已知動點到點和直線l 的距離相等.

(Ⅰ)求動點的軌跡E的方程;

(Ⅱ)已知不與垂直的直線與曲線E有唯一公共點A,且與直線的交點為,以AP為直徑作圓.判斷點和圓的位置關(guān)系,并證明你的結(jié)論.

【答案】(Ⅰ);(Ⅱ)見解析.

【解析】試題分析:(1)根據(jù)拋物線定義可得方程(2)AP為直徑作圓,判斷點和圓的位置關(guān)系則只需驗證等于零否從而可得結(jié)論

(Ⅰ)設(shè)動點,

由拋物線定義可知點的軌跡E是以為焦點,直線l 為準線的拋物線,

所以軌跡E的方程為.

(Ⅱ)法1:由題意可設(shè)直線

可得(*),

因為直線與曲線E有唯一公共點A

所以,即.

所以(*)可化簡為

所以,

,

因為,

所以

所以,

所以點在以PA為直徑的圓上.

法2:依題意可設(shè)直線,

可得(*),

因為直線與曲線E有唯一公共點A,且與直線的交點為,

所以

所以(*)可化簡為

所以.

,

因為,

所以

所以點在以PA為直徑的圓上.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù) ,且其圖象關(guān)于直線x=0對稱,則(
A.y=f(x)的最小正周期為π,且在(0, )上為增函數(shù)
B.y=f(x)的最小正周期為π,且在(0, )上為減函數(shù)
C.y=f(x)的最小正周期為 ,且在 上為增函數(shù)
D.y=f(x)的最小正周期為 ,且在 上為減函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}當n≥2時滿足 = + ,且a3a5a7= + + =9,Sn是數(shù)列{ }的前n項和,則S4=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,AB為圓O的直徑,CD為垂直AB的一條弦,垂足為E,弦AG交CD于F.

(1)求證:E、F、G、B四點共圓;
(2)若GF=2FA=4,求線段AC的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了響應(yīng)教育部頒布的《關(guān)于推進中小學(xué)生研學(xué)旅行的意見》,某校計劃開設(shè)八門研學(xué)旅行課程,并對全校學(xué)生的選擇意向進行調(diào)查(調(diào)查要求全員參與,每個學(xué)生必須從八門課程中選出唯一一門課程).本次調(diào)查結(jié)果整理成條形圖如下.

上圖中,已知課程為人文類課程,課程為自然科學(xué)類課程.為進一步研究學(xué)生選課意向,結(jié)合上面圖表,采取分層抽樣方法從全校抽取的學(xué)生作為研究樣本組(以下簡稱“組M”).

(Ⅰ)在“組M”中,選擇人文類課程和自然科學(xué)類課程的人數(shù)各有多少?

(Ⅱ)為參加某地舉辦的自然科學(xué)營活動,從“組M”所有選擇自然科學(xué)類課程的同學(xué)中隨機抽取4名同學(xué)前往,其中選擇課程F或課程H的同學(xué)參加本次活動,費用為每人1500元,選擇課程G的同學(xué)參加,費用為每人2000元.

(ⅰ)設(shè)隨機變量表示選出的4名同學(xué)中選擇課程的人數(shù),求隨機變量的分布列;

(ⅱ)設(shè)隨機變量表示選出的4名同學(xué)參加科學(xué)營的費用總和,求隨機變量的期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱ABC﹣A1B1C1中,D是BC的中點.

(1)若E為B1C1的中點,求證:BE∥平面AC1D;
(2)若平面B1BCC1⊥平面ABC,且AB=AC,求證:平面AC1D⊥平面B1BCC1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)= x2﹣mlnx,g(x)=x2﹣(m+1)x,m>0.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當m≥1時,討論函數(shù)f(x)與g(x)圖象的交點個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C:(a>b>0)的離心率為 ,若圓x2+y2=a2被直線x﹣y﹣=0截得的弦長為2

(Ⅰ)求橢圓C的標準方程;

(Ⅱ)已知點A、B為動直線y=k(x﹣1),k≠0與橢圓C的兩個交點,問:在x軸上是否存在定點M,使得 為定值?若存在,試求出點M的坐標和定值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓M:的左頂點為、中心為若橢圓M過點,且

1)求橢圓M的方程;

2)若△APQ的頂點Q也在橢圓M上,試求△APQ面積的最大值;

3)過點作兩條斜率分別為的直線交橢圓M兩點,且,求證:直線恒過一個定點

查看答案和解析>>

同步練習(xí)冊答案