【題目】已知函數(shù) ,其中 (為自然對數(shù)的底數(shù)).

(Ⅰ)討論函數(shù)的單調(diào)性,并寫出相應(yīng)的單調(diào)區(qū)間;

(Ⅱ)設(shè),若函數(shù)對任意都成立,求的最大值.

【答案】(I)見解析 (II) .

【解析】試題分析: (I)求出,分別討論單調(diào)性,求出單調(diào)區(qū)間; (II)先對參數(shù)時分別討論,利用特殊值檢驗不能恒成立,在時,由函數(shù) 對任意 都成立,得,即, ,構(gòu)造關(guān)于a的新函數(shù),求導判斷單調(diào)性求出最大值,即的最大值.

試題解析:(I)因為 ,

①當 時, 恒成立,函數(shù)上單調(diào)遞增;

②當 時,由 ,

所以當 ,此時 單調(diào)遞減;

,此時單調(diào)遞增.

綜上,當時,函數(shù)的單調(diào)遞增區(qū)間為 ;

時,函數(shù)的單調(diào)遞增區(qū)間為

單調(diào)遞減區(qū)間為 .

(II) 由(I)知,當 時,函數(shù)在R上單調(diào)遞增且 時, .

所以 不可能恒成立;

時, ;

時,由函數(shù) 對任意 都成立,得 .

因為 ,

所以 .

所以

設(shè)

所以,

由于 ,令 ,得.

時, , 單調(diào)遞增;

)時, 單調(diào)遞減.

所以,即, 時, 的最大值為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】在正方體ABCD﹣A1B1C1D1中,E是棱CC1的中點,F(xiàn)是側(cè)面BCC1B1內(nèi)的動點,且A1F∥平面D1AE,則A1F與平面BCC1B1所成角的正切值t構(gòu)成的集合是(
A.{t| }
B.{t| ≤t≤2}
C.{t|2 }
D.{t|2 }

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)離心率為 的橢圓 的左、右焦點為 , PE上一點, , 內(nèi)切圓的半徑為 .

(1)E的方程;

(2)矩形ABCD的兩頂點C、D在直線,A、B在橢圓E,若矩形ABCD的周長為 , 求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】假設(shè)關(guān)于某設(shè)備的使用年限x(年)和所支出的維修費用y(萬元)有如下的統(tǒng)計資料:

x

2

3

4

5

6

y

2.2

3.8

5.5

6.5

7.0


(1)畫出散點圖并判斷是否線性相關(guān);
(2)如果線性相關(guān),求線性回歸方程;
(3)估計使用年限為10年時,維修費用是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=2x3+bx2+cx,其導函數(shù)y=f′(x)的圖象(如圖所示)經(jīng)過點(1,0),(2,0). (Ⅰ)求f(x)的解析式;
(Ⅱ)若方程f(x)﹣m=0恰有2個根,求m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某高校在2012年的自主招生考試成績中隨機抽取100名學生的筆試成績,按成績分組,得到的頻率分布表如圖所示.

成績分組

頻數(shù)

頻率

(160,165]

5

0.05

(165,170]

0.35

(170,175]

30

(175,180]

20

0.20

(180,185]

10

0.10

合計

100

1


(1)請先求出頻率分布表中①、②位置相應(yīng)的數(shù)據(jù),再畫出頻率分布直方圖;
(2)為了能選拔出最優(yōu)秀的學生,該高校決定在筆試成績高的第3、4、5組中用分層抽樣抽取6名學生進入第二輪面試,求第3、4、5組每組各抽取多少名學生進入第二輪面試?
(3)在(2)的前提下,學校決定在6名學生中隨機抽取2名學生接受A考官的面試,求第四組至少有一名學生被考官A面試的概率?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,設(shè)Ox、Oy是平面內(nèi)相交成45°角的兩條數(shù)軸, 、 分別是x軸、y軸正方向同向的單位向量,若向量 =x +y ,則把有序數(shù)對(x,y)叫做向量 在坐標系xOy中的坐標,在此坐標系下,假設(shè) =(﹣2,2 ), =(2,0), =(5,﹣3 ),則下列命題不正確的是(
A. =(1,0)
B.| |=2
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面是菱形, 平面, , 中點.

I)求證:直線平面

II)求證:直線平面

III)在上是否存在一點,使得二面角的大小為,若存在,確定的位置,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若存在實常數(shù),使得函數(shù)對其定義域上的任意實數(shù)分別滿足: ,則稱直線隔離直線.已知, 為自然對數(shù)的底數(shù))

1)求的極值;

2)函數(shù)是否存在隔離直線?若存在,求出此隔離直線方程;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案