分析 求出A的坐標和切線方程,則所求面積和體積均可用兩個定積分的差來表示.
解答 解:設(shè)切線方程為y=kx+1,切點坐標為(a,b),
則$\left\{\begin{array}{l}{k=\frac{1}{a}}\\{ka+1=b}\\{lna=b}\end{array}\right.$,解得a=e2,b=2,∴A(e2,2).
將y=0代入y=lnx得x=1,∴B(1,0).
∴直線AB的方程為$\frac{y}{2}=\frac{x-1}{{e}^{2}-1}$,即y=$\frac{2x}{{e}^{2}-1}$-$\frac{2}{{e}^{2}-1}$.
∴區(qū)域D的面積為${∫}_{1}^{{e}^{2}}lnxdx$-${∫}_{1}^{{e}^{2}}$($\frac{2x}{{e}^{2}-1}$-$\frac{2}{{e}^{2}-1}$)dx=(xlnx-x)${|}_{1}^{{e}^{2}}$-($\frac{{x}^{2}-2x}{{e}^{2}-1}$)${|}_{1}^{{e}^{2}}$=2.
區(qū)域D繞x軸旋轉(zhuǎn)一周所得幾何體體積為π•${∫}_{1}^{{e}^{2}}(lnx)^{2}dx$-$\frac{1}{3}×π×{2}^{2}×({e}^{2}-1)$=π•x[(lnx)2-2lnx+2]|$\underset{\stackrel{{e}^{2}}{\;}}{1}$-$\frac{4π({e}^{2}-1)}{3}$=(2e2-2)•π-$\frac{4π({e}^{2}-1)}{3}$=$\frac{2π{(e}^{2}-1)}{3}$.
點評 本題考查了定積分在求面積、體積中的應(yīng)用,是中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{5}-1$ | B. | 2 | C. | $\sqrt{5}$ | D. | $\sqrt{5}+1$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com