已知函數(shù)f(x)=x2-1,g(x)=m|x-1|(m∈R).
(1)若關(guān)于x的方程|f(x)|=g(x)只有一個(gè)實(shí)數(shù)解,求實(shí)數(shù)m的取值范圍;
(2)若當(dāng)x∈R時(shí),關(guān)于x的不等式f(x)≥g(x)恒成立,求實(shí)數(shù)m的取值范圍;
(3)求函數(shù)h(x)=|f(x)|+g(x)在區(qū)間[0,2]上的最大值(直接寫(xiě)出結(jié)果,不需給出演算步驟).

解::(1)方程|f(x)|=g(x),即|x2-1|=m|x-1|,變形得|x-1|(|x+1|-m)=0,
顯然,x=1已是該方程的根,從而欲使原方程只有一解,即要求方程|x+1|=m有且僅有一個(gè)等于1的解或無(wú)解,∴m<0.
(2)當(dāng)x∈R時(shí),不等式f(x)≥g(x)恒成立,即(x2-1)≥m|x-1|(*)對(duì)x∈R恒成立,
①當(dāng)x=1時(shí),(*)顯然成立,此時(shí)m∈R;
②當(dāng)x≠1時(shí),(*)可變形為m≤,令φ(x)==,
因?yàn)楫?dāng)x>1時(shí),φ(x)>2,當(dāng)x<1時(shí),φ(x)>-2,所以φ(x)>-2,故此時(shí)m≤-2.
綜合①②,得所求實(shí)數(shù)m的取值范圍是(-∞,-2].
(3)(Ⅲ)因?yàn)閔(x)=|f(x)|+g(x)=|x2-1|+m|x-1|=,由此可得
當(dāng)m≥0時(shí),h(x)在[-2,2]上的最大值為3a+3;
當(dāng)-3≤m<0時(shí),h(x)在[-2,2]上的最大值為a+3;
當(dāng)m<-3時(shí),h(x)在[-2,2]上的最大值為0.
分析:(1)將方程變形,利用x=1已是該方程的根,從而欲原方程只有一解,即要求方程|x+1|=m有且僅有一個(gè)等于1的解或無(wú)解,從而可求實(shí)數(shù)m的取值范圍;
(2)將不等式分離參數(shù),確定函數(shù)的值域,即可求得實(shí)數(shù)m的取值范圍.
(3)去絕對(duì)值,分段求函數(shù)的最值.
點(diǎn)評(píng):本題考查構(gòu)成根的問(wèn)題,考查分離參數(shù)法的運(yùn)用,考查恒成立問(wèn)題,正確變形是解題的關(guān)鍵,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案