精英家教網 > 高中數學 > 題目詳情
已知Sn={A|A=(a1,a2,a3,…an)}ai=0或1,i={1,2,••,n}(n≥2),對于U,V∈Sn,d(U,V)表示U和V中相對應的元素不同的個數.
(Ⅰ)如果U=(0,0,0,0),存在m個V∈S4,使得d(U,V)=2,寫出m的值;
(Ⅱ)如果w=
0,0,0,…0
n個0
,U,V∈Sn,求證:d(U,W)+d(V,W)≥d(U,V).
分析:(Ⅰ)根據V∈S4,d(U,V)=2及d(U,V)的意義:表示U和V中相對應的元素不同的個數,可知m=C42
(Ⅱ)根據ai=0或1,i=1,2,••,n,分類討論ai=0,bi=0時,|ai|+|bi|=0=|ai-bi|;當ai=0,bi=1時,|ai|+|bi|=1=|ai-bi|;當ai=1,bi=0時,|ai|+|bi|=1=|ai-bi|; 當ai=1,bi=1時,|ai|+|bi|=2≥|ai-bi|=0,可證,|ai|+|bi|≥|ai-bi|,再相加即可證明結論;
解答:解:(Ⅰ)∵V∈S4,d(U,V)=2,
∴C42=10,即m=6;
(Ⅱ)證明:令U=(a1,a2,a3,…an),V=(b1,b2,b3,…bn
∵ai=0或1,bi=0或1;
當ai=0,bi=0時,|ai|+|bi|=0=|ai-bi|
當ai=0,bi=1時,|ai|+|bi|=1=|ai-bi|
當ai=1,bi=0時,|ai|+|bi|=1=|ai-bi|
當ai=1,bi=1時,|ai|+|bi|=2≥|ai-bi|=0
故,|ai|+|bi|≥|ai-bi|
∴d(U,W)+d(V,W)=(a1+a2+a3+…+an)+(b1+b2+b3+…+bn
=(|a1|+|a2|+|a3|+…+|an|)+(|b1|+|b2|+|b3|+…+|bn|)
≥|a1-b1|+|a2-b2|+|a3-b3|+…+|an-bn|.
點評:此題是個難題.本題是綜合考查集合推理綜合的應用,這道題目的難點主要出現在讀題上,需要仔細分析,以找出解題的突破點.題目所給的條件其實包含兩個定義,第一個是關于Sn的,其實Sn中的元素就是一個n維的坐標,其中每個坐標值都是0或者1,也可以這樣理解,就是一個n位數字的數組,每個數字都只能是0和1,第二個定義d(U,V).
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知Sn={A|A=(a1,a2,a3,…an)},ai={0或1},i=1,2,••,n(n≥2),對于U,V∈Sn,d(U,V)表示U和V中相對應的元素不同的個數.
(Ⅰ)令U=(0,0,0,0),存在m個V∈S5,使得d(U,V)=2,寫出m的值;
(Ⅱ)令w=
0,0,0,…0
n個0
,U,V∈Sn,求證:d(U,W)+d(V,W)≥d(U,V);
(Ⅲ)令U=(a1,a2,a3,…an),若V∈Sn,求所有d(U,V)之和.

查看答案和解析>>

科目:高中數學 來源:2013年高考百天仿真沖刺數學試卷5(理科)(解析版) 題型:解答題

已知Sn={A|A=(a1,a2,a3,…an)},ai={0或1},i=1,2,••,n(n≥2),對于U,V∈Sn,d(U,V)表示U和V中相對應的元素不同的個數.
(Ⅰ)令U=(0,0,0,0),存在m個V∈S5,使得d(U,V)=2,寫出m的值;
(Ⅱ)令,U,V∈Sn,求證:d(U,W)+d(V,W)≥d(U,V);
(Ⅲ)令U=(a1,a2,a3,…an),若V∈Sn,求所有d(U,V)之和.

查看答案和解析>>

科目:高中數學 來源:2013年中國人民大學附中高考數學沖刺試卷05(理科)(解析版) 題型:解答題

已知Sn={A|A=(a1,a2,a3,…an)},ai={0或1},i=1,2,••,n(n≥2),對于U,V∈Sn,d(U,V)表示U和V中相對應的元素不同的個數.
(Ⅰ)令U=(0,0,0,0),存在m個V∈S5,使得d(U,V)=2,寫出m的值;
(Ⅱ)令,U,V∈Sn,求證:d(U,W)+d(V,W)≥d(U,V);
(Ⅲ)令U=(a1,a2,a3,…an),若V∈Sn,求所有d(U,V)之和.

查看答案和解析>>

科目:高中數學 來源:2011年北京市豐臺區(qū)高考數學一模試卷(文科)(解析版) 題型:解答題

已知Sn={A|A=(a1,a2,a3,…an)}ai=0或1,i={1,2,••,n}(n≥2),對于U,V∈Sn,d(U,V)表示U和V中相對應的元素不同的個數.
(Ⅰ)如果U=(0,0,0,0),存在m個V∈S4,使得d(U,V)=2,寫出m的值;
(Ⅱ)如果,U,V∈Sn,求證:d(U,W)+d(V,W)≥d(U,V).

查看答案和解析>>

同步練習冊答案