已知直線x+y=a與圓x2+y2=4交于A、B兩點,且||=||,其中O為原點,則實數(shù)a的值為( )
A.2
B.-2
C.2或-2
D.或-
【答案】分析:條件“||=||”是向量模的等式,通過向量的平方可得向量的數(shù)量積|2=||2,=0,可得出垂直關系,接下來,如由直線與圓的方程組成方程組求出A、B兩點的坐標,勢必計算很繁,故采用設而不求的方法.
解答:解:由||=||得||2=||2,=0,,
三角形AOB為等腰直角三角形,圓心到直線的距離為,即=,a=±2,故選C.
點評:若非零向量,,滿足||=||,則.模的處理方法一般進行平方,轉化成向量的數(shù)量積.
向量是既有大小,又有方向的量,它既有代數(shù)特征,又有幾何特征,通過向量可以實現(xiàn)代數(shù)問題與幾何問題的互相轉化,所以向量是數(shù)形結合的橋梁.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知直線x+y=a與圓x2+y2=4交于A、B兩點,O是坐標原點,向量
OA
、
OB
滿足|
OA
+
OB
|=|
OA
-
OB
|
,則實數(shù)a的
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線x+y=a與圓x2+y2=4交于A、B兩不同點,O是坐標原點,向量
OA
OB
滿足
OA
OB
=0,則實數(shù)a的值是( 。
A、2
B、±2
C、±
6
D、-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線x+y=a與圓x2+y2=4交于A、B兩點,O是坐標原點,向量
OA
、
OB
滿足|
OA
+
OB
|=|
OA
-
OB|
,則實數(shù)a的值( 。
A、2
B、-2
C、
6
或-
6
D、2或-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線x+y=a與圓x2+y2=2交于A、B兩點,O是原點,C是圓上一點,若
OA
+
OB
=
OC
,則a的值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線x+y=a與圓x2+y2=4交于A,B兩點,O為原點,且
OA
OB
=2
,則實數(shù)a的值等于
±
6
±
6

查看答案和解析>>

同步練習冊答案