【題目】已知函數;.
(1)判斷在上的單調性,并說明理由;
(2)求的極值;
(3)當時,,求實數的取值范圍.
【答案】(1)見解析(2)極小值.(3)
【解析】
(1)求導數,根據導函數符號確定單調性,(2)利用導數研究導函數單調性,根據單調性確定導函數符號變化規(guī)律,即得函數極值,(3)先根據特殊值得,再由(1)得,結合得,因此,最后利用(2)證明滿足條件.
解:(1)∵,
則.
當時,,,得,
∴在上單調遞減.
(2)∵,
則,
令,則.
∴即在上單調遞增.
又,
∴當時,,當時,.
∴在上單調遞增,在上單調遞減,
∴有極小值.
(3)令,
即對成立.
①時,與矛盾,不成立.
②時,當時,
令,則,
∴在上單調遞增,
又,∴,即.
由(2)知.
當時,,而,等號不同時成立,
∴.
③時,若,則,
即,
由(1)知,
即.
∴,
∴不成立.
綜上,的取值范圍為.
科目:高中數學 來源: 題型:
【題目】如圖,,,是由直線引出的三個不重合的半平面,其中二面角大小為60°,在二面角內繞直線旋轉,圓在內,且圓在,內的射影分別為橢圓,.記橢圓,的離心率分別為,,則的取值范圍是( )
A.B.C.D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓C過兩點A(0,4),B(4,6),且圓心在直線x﹣2y﹣2=0上.
(1)求圓C的方程;
(2)若直線l過原點且被圓C截得的弦長為6,求直線l的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系xOy中,直線的參數方程為(t為參數),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,已知曲線的極坐標方程為,直線與曲線C交于兩點.
(1)求直線的普通方程和曲線C的直角坐標方程;
(2)求.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某籃球隊甲、乙兩名運動員練習罰球,每人練習10組,每組罰球40個.命中個數的莖葉圖如圖,則下面結論中錯誤的一個是( )
A. 甲的極差是29 B. 甲的中位數是24
C. 甲罰球命中率比乙高 D. 乙的眾數是21
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】近年來,隨著互聯網技術的快速發(fā)展,共享經濟覆蓋的范圍迅速擴張,繼共享單車、共享汽車之后,共享房屋以“民宿”、“農家樂”等形式開始在很多平臺上線.某創(chuàng)業(yè)者計劃在某景區(qū)附近租賃一套農房發(fā)展成特色“農家樂”,為了確定未來發(fā)展方向,此創(chuàng)業(yè)者對該景區(qū)附近六家“農家樂”跟蹤調查了天.得到的統(tǒng)計數據如下表,為收費標準(單位:元/日),為入住天數(單位:),以頻率作為各自的“入住率”,收費標準與“入住率”的散點圖如圖
x | 50 | 100 | 150 | 200 | 300 | 400 |
t | 90 | 65 | 45 | 30 | 20 | 20 |
(1)若從以上六家“農家樂”中隨機抽取兩家深入調查,記為“入住率”超過的農家樂的個數,求的概率分布列;
(2)令,由散點圖判斷與哪個更合適于此模型(給出判斷即可,不必說明理由)?并根據你的判斷結果求回歸方程.(結果保留一位小數)
(3)若一年按天計算,試估計收費標準為多少時,年銷售額最大?(年銷售額入住率收費標準)
參考數據:
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:的左右焦點分別為、,左右頂點分別是、,長軸長為,是以原點為圓心,為半徑的圓的任一條直徑,四邊形的面積最大值為.
(1)求橢圓的方程;
(2)不經過原點的直線:與橢圓交于、兩點,
①若直線與的斜率分別為,,且,求證:直線過定點,并求出該定點的坐標;
②若直線的斜率是直線、斜率的等比中項,求面積的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率為,橢圓截直線所得的線段的長度為.
(Ⅰ)求橢圓的方程;
(Ⅱ)設直線與橢圓交于兩點,點是橢圓上的點,是坐標原點,若,判定四邊形的面積是否為定值?若為定值,求出定值;如果不是,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com