【題目】已知y=f(x)是定義在R上的偶函數(shù),當(dāng)x0時(shí),f(x)=.
(1)求當(dāng)x<0時(shí),f(x)的解析式;
(2)作出函數(shù)f(x)的圖象,并指出其單調(diào)區(qū)間.
【答案】(1) 當(dāng)x<0時(shí),f(x) (2) 遞減區(qū)間是(-∞,0],遞增區(qū)間是[0,+∞).
【解析】
試題利用函數(shù)的奇偶性求函數(shù)的解析式是函數(shù)的奇偶性的應(yīng)用之一,給出函數(shù)在x>0的解析式,利用當(dāng)x<0時(shí),-x>0,借助f(x)=f(-x)就可以求出x<0時(shí)的解析式;作函數(shù)圖象最好先觀察一下函數(shù)的解析式的形式特點(diǎn),了解一下函數(shù)的簡單性質(zhì),利用圖象變換作圖象又快又準(zhǔn),左移2個(gè)單位得出的圖象,取的部分,y軸左邊的圖象與y軸右邊的圖象關(guān)于y軸對稱.根據(jù)圖象寫出單調(diào)區(qū)間.
試題解析:
(1)當(dāng)x<0時(shí),-x>0,
∴f(-x)=,
又f(x)是定義在R上的偶函數(shù),
∴f(-x)=f(x),
∴當(dāng)x<0時(shí), .
(2)由(1)知,
作出f(x)的圖象如圖所示:
由圖得函數(shù)f(x)的遞減區(qū)間是(-∞,0],遞增區(qū)間是[0,+∞).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】解答下列問題:
(1)求平行于直線3x+4y- 2=0,且與它的距離是1的直線方程;
(2)求垂直于直線x+3y -5=0且與點(diǎn)P( -1,0)的距離是的直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x﹣1﹣alnx.
(Ⅰ)若 f(x)≥0,求a的值;
(Ⅱ)設(shè)m為整數(shù),且對于任意正整數(shù)n,(1+ )(1+ )…(1+ )<m,求m的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若為奇函數(shù),求的值;
(2)試判斷在內(nèi)的單調(diào)性,并用定義證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)是定義在(﹣∞,0)上的可導(dǎo)函數(shù),其導(dǎo)函數(shù)為f′(x),且有xf′(x)>x2+3f(x),則不等式8f(x+2014)+(x+2014)3f(﹣2)>0的解集為( )
A.(﹣∞,﹣2016)
B.(﹣2018,﹣2016)
C.(﹣2018,0)
D.(﹣∞,﹣2018)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從1、2、3、4、5五個(gè)數(shù)字中任意取出無重復(fù)的3個(gè)數(shù)字.
(I)可以組成多少個(gè)三位數(shù)?
(II)可以組成多少個(gè)比300大的偶數(shù)?
(III)從所組成的三位數(shù)中任取一個(gè),求該數(shù)字是大于300的奇數(shù)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2cos ,數(shù)列{an}中,an=f(n)+f(n+1)(n∈N*),則數(shù)列{an}的前100項(xiàng)之和S100= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在中,角、、的對邊分別為、、,為的外接圓半徑.
(1)若,,,求;
(2)在中,若為鈍角,求證:;
(3)給定三個(gè)正實(shí)數(shù)、、,其中,問:、、滿足怎樣的關(guān)系時(shí),以、為邊長,為外接圓半徑的不存在,存在一個(gè)或存在兩個(gè)(全等的三角形算作同一個(gè))?在存在的情兄下,用、、表示.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com