【題目】已知函數(shù).

(1)若函數(shù)的圖象在點處的切線方程為,求的值;

(2)當時,在區(qū)間上至少存在一個,使得成立,求的取值范圍.

【答案】(1)(2)

【解析】分析1)根據(jù)導數(shù)的意義,在的切線方程斜率即為從而得到

n-m=3;又因為切點在直線上,所以。而切點又在曲線方程上,可以得到,所以

(2)根據(jù)函數(shù)至少存在一個,使得成立,所以可以根據(jù)導函數(shù)正負的討論確定函數(shù)的單調(diào)性;再在各自單調(diào)區(qū)間內(nèi)分析函數(shù)的單調(diào)性,這樣就可以得到從而確定m的取值范圍。

詳解:(1)因為,所以,即.

又因為,所以切點坐標為,

因為切點在直線上,所以.

(2)因為,所以 .

時, ,所以函數(shù)上單調(diào)遞增,令,此時,符合題意;

時,令,則,則函數(shù)上單調(diào)遞減,在上單調(diào)遞增.

①當,即時,則函數(shù)上單調(diào)遞減,在上單調(diào)遞增

,解得.

②當,即時,函數(shù)在區(qū)間上單調(diào)遞減,則函數(shù)在區(qū)間上的最小值為,解得,無解.

綜上,,即得取值范圍是.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某產(chǎn)品的廣告費用x與銷售額y的統(tǒng)計數(shù)據(jù)如表:

廣告費用x(萬元)

1

2

4

5

銷售額y(萬元)

6

14

28

32

根據(jù)上表中的數(shù)據(jù)可以求得線性回歸方程 = x+ 中的 為6.6,據(jù)此模型預報廣告費用為10萬元時銷售額為(
A.66.2萬元
B.66.4萬元
C.66.8萬元
D.67.6萬元

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某大學為調(diào)查來自南方和北方的同齡大學生的身高差異,從2016級的年齡在18~19歲之間的大學生中隨機抽取了來自南方和北方的大學生各10名,測量他們的身高,量出的身高如下(單位:cm):

南方:158,170,166,169,180,175,171,176,162,163.

北方:183,173,169,163,179,171,157,175,184,166.

(1)根據(jù)抽測結(jié)果,畫出莖葉圖,對來自南方和北方的大學生的身高作比較,寫出統(tǒng)計結(jié)論.

(2)設抽測的10名南方大學生的平均身高為cm,將10名南方大學生的身高依次輸入如圖所示的程序框圖進行運算,問輸出的s大小為多少?并說明s的統(tǒng)計學意義。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知過點A(0,1)且斜率為k的直線l與圓C:(x﹣2)2+(y﹣3)2=1交于點M、N兩點.
(1)求k的取值范圍;
(2)若 =12,其中O為坐標原點,求|MN|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】觀察下列等式:12=1,12﹣22=﹣3,12﹣22+32=6,12﹣22+32﹣42=﹣10,…由以上等式推測到一個一般的結(jié)論:對于n∈N* , 12﹣22+32﹣42+…+(﹣1)n+1n2=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐PABC中,PAABPABC,ABBCPAABBC=2,D為線段AC的中點,E為線段PC上一點.

(1)求證:PABD;

(2)求證:平面BDE平面PAC

(3)PA平面BDE時,求三棱錐EBCD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在長方體中,是棱的中點,點 在棱上,且為實數(shù)).

(1)求二面角的余弦值;

(2)當時,求直線與平面所成角的正弦值的大小;

(3)求證:直線與直線不可能垂直.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某服務電話,打進的電話響第1聲時被接的概率是0.1;響第2聲時被接的概率是0.2;響第3聲時被接的概率是0.3;響第4聲時被接的概率是0.35.

(1)打進的電話在響5聲之前被接的概率是多少?

(2)打進的電話響4聲而不被接的概率是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù),,,記.

1)求曲線處的切線方程;

2)求函數(shù)的單調(diào)區(qū)間;

3)當時,若函數(shù)沒有零點,求的取值范圍.

查看答案和解析>>

同步練習冊答案