已知函數(shù).
(Ⅰ)若關(guān)于的不等式的解集為,求實(shí)數(shù)的值;
(Ⅱ)若對(duì)于任意的恒成立,求實(shí)數(shù)的取值范圍.
解:(Ⅰ)因?yàn)?sub>,所以,所以,由題意,所以;
(Ⅱ)若恒成立,所以恒成立,因?yàn)?sub>當(dāng)且僅當(dāng)時(shí)取等,所以.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
設(shè)首項(xiàng)為a1的正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn,q為非零常數(shù),已知對(duì)任意正整數(shù)n、m,Sn+m=Sm+qmSn總成立.求證:數(shù)列{an}是等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
若對(duì)于定義在R上的連續(xù)函數(shù),存在常數(shù)(),使得對(duì)任意的實(shí)數(shù)成立,則稱(chēng)是回旋函數(shù),且階數(shù)為.現(xiàn)有下列4個(gè)命題:
①冪函數(shù)必定不是回旋函數(shù);
②若()為回旋函數(shù),則其最小正周期必不大于2;
③若指數(shù)函數(shù)為回旋函數(shù),則其階數(shù)必大于1;
④若對(duì)任意一個(gè)階數(shù)為的回旋函數(shù),方程均有實(shí)數(shù)根。
其中真命題的個(gè)數(shù)為( )
A.1個(gè) B.2 個(gè) C.3個(gè) D.4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
定義在上的函數(shù)滿(mǎn)足下列兩個(gè)條件:(1)對(duì)任意的恒有成立;(2)當(dāng) 時(shí),.記函數(shù),若函數(shù)恰有兩個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是
(A) (B) (C) (D)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
如圖,在三棱柱中,,,為的中點(diǎn),.
(Ⅰ)求證:平面平面;
(Ⅱ)求直線(xiàn)與平面所成角的正弦值;
(Ⅲ)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
設(shè)四面體的六條棱的長(zhǎng)分別為1,1,1,1,和a且長(zhǎng)為a的棱與長(zhǎng)為的棱異面,則a的取值范圍是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
若存在區(qū)間M=[a,b](a<b),使得{y|y=f(x),x∈M}=M,則稱(chēng)區(qū)間M為函數(shù)f(x)的一個(gè)“穩(wěn)定區(qū)間”.給出下列四個(gè)函數(shù):①y=ex,x∈R;②f(x)=x3;③f(x)=cos;④f(x)=ln x+1.其中存在穩(wěn)定區(qū)間的函數(shù)有________(寫(xiě)出所有正確命題的序號(hào)).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com