精英家教網 > 高中數學 > 題目詳情
6.直線$x+\sqrt{3}y-1=0$的傾斜角為( 。
A.$\frac{π}{3}$B.$\frac{π}{6}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

分析 由直線的方程可得斜率等于-$\frac{\sqrt{3}}{3}$,設直線的傾斜角為θ,則tanθ=-$\frac{\sqrt{3}}{3}$,0≤θ<π,由此解得 θ的值.

解答 解:∵直線$x+\sqrt{3}y-1=0$的斜率等于-$\frac{\sqrt{3}}{3}$,設直線$x+\sqrt{3}y-1=0$的傾斜角為θ,
則tanθ=-$\frac{\sqrt{3}}{3}$,0≤θ<π,解得 θ=$\frac{5π}{6}$,
故選D.

點評 本題主要考查直線的傾斜角和斜率的關系,以及傾斜角的取值范圍,已知三角函數值求角的大小,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

16.若正整數N除以正整數m后的余數為n,則記為N=n( mod m),例如10=2(mod 4).如圖程序框圖的算法源于我國古代聞名中外的《中國剩余定理》.執(zhí)行該程序框圖,則輸出的n等于(  )
A.20B.21C.22D.23

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

17.三位男同學兩位女同學站成一排,女同學不站兩端的排法總數為( 。
A.6B.36C.48D.120

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

14.我校教育處連續(xù)30天對同學們的著裝進行檢查,著裝不合格的人數為如圖所示的莖葉圖,則中位數,眾數,極差分別是( 。
A.44,45,56B.44,43,57C.44,43,56D.45,43,57

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

1.具有公共y軸的兩個直角坐標平面α和β所成的二面角α-y軸-β等于60°,已知β內的曲線C'的方程是y2=4x',曲線C'在α內的射影在平面α內的曲線方程為y2=2px,則p=1.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

11.某班50人的一次競賽成績的頻數分布如下:[60,70):3人,[70,80):16人,[80,90):24人,[90,100]:7人,利用各組區(qū)間中點值,可估計本次比賽該班的平均分為( 。
A.56B.68C.78D.82

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

18.如圖,在三棱錐S-ABC中,△ABC為直角三角形,且∠ACB=90°,SA⊥平面ABC,AD⊥SC.
求證:AD⊥平面SBC.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

15.設集合M=[0,$\frac{1}{2}$),N=[$\frac{1}{2}$,1],函數f(x)=$\left\{\begin{array}{l}{x+\frac{1}{2},x∈M}\\{2(1-x),x∈N}\end{array}\right.$.若x0∈M且f(f(x0))∈M,則x0的取值范圍為( 。
A.(0,$\frac{1}{4}$]B.[0,$\frac{3}{8}$]C.($\frac{1}{4}$,$\frac{1}{2}$]D.($\frac{1}{4}$,$\frac{1}{2}$)

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

16.在平面直角坐標系上,有一點列P0,P1,P2,P3,…,Pn-1,Pn,設點Pk的坐標(xk,yk)(k∈N,k≤n),其中xk、yk∈Z,記△xk=xk-xk-1,△yk=yk-yk-1,且滿足|△xk|•|△yk|=2(k∈N*,k≤n);
(1)已知點P0(0,1),點P1滿足△y1>△x1>0,求P1的坐標;
(2)已知點P0(0,1),△xk=1(k∈N*,k≤n),且{yk}(k∈N,k≤n)是遞增數列,點Pn在直線l:y=3x-8上,求n;
(3)若點P0的坐標為(0,0),y2016=100,求x0+x1+x2+…+x2016的最大值.

查看答案和解析>>

同步練習冊答案