定義在R上的函數(shù)y=f(x)既是奇函數(shù)又是周期函數(shù),若函數(shù)y=f(x)的最小正周期是2,且當x∈(0,1)時,f(x)=log
1
2
(1-x),則f(x)在區(qū)間(1,2)上是(  )
A.增函數(shù)且f(x)>0B.增函數(shù)且f(x)<0
C.減函數(shù)且f(x)>0D.減函數(shù)且f(x)<0
當x∈(-1,0)時,可得f(-x)=log
1
2
[1-(-x)]
=log
1
2
(1+x)
,
∵f(x)是定義在R上的奇函數(shù),∴當x∈(-1,0)時,f(-x)=-f(x)=log
1
2
(1+x)
,可得f(x)=log
1
2
(1+x)
-1=log
1
2
1
1+x

又∵f(x)的最小正周期是2,
∴f(x)在區(qū)間(1,2)的單調(diào)性、值域與f(x)在區(qū)間(-1,0)上的單調(diào)性、值域相同
∵t=
1
1+x
在區(qū)間(-1,0)上是減函數(shù),得t=
1
1+x
<1
∴結(jié)合0
1
2
<1
,可得log
1
2
1
1+x
>0,且f(x)在區(qū)間(1,2)是增函數(shù)
故選:B
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

11、定義在R上的函數(shù)y=f(x)滿足f(-x)=-f(x),f(1+x)=f(1-x),當x∈[-1,1]時,f(x)=x3,則f(2009)的值是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

13、定義在R上的函數(shù)y=f(x)滿足:f(x)=f(4-x),且f(x-2)+f(2-x)=0,則f(508)=
0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義在R上的函數(shù)y=f(x)滿足f(3-x)=f(x),(x-
3
2
)f′(x)>0(x≠
3
2
)
,若x1<x2,且x1+x2>3,則有( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列四個命題:
①“a>b”是“2a>2b”成立的充要條件;
②“a=b”是“l(fā)ga=lgb”成立的充分不必要條件;
③函數(shù)f(x)=ax2+bx(x∈R)為奇函數(shù)的充要條件是“a=0”
④定義在R上的函數(shù)y=f(x)是偶函數(shù)的必要條件是
f(-x)f(x)
=1”

其中真命題的序號是
①③
①③
.(把真命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義在R上的函數(shù)y=f(x)滿足f(-x)=-f(x),f(1+x)=f(1-x),當x∈[-1,1]時,f(x)=x3,則f(2011)=
-1
-1

查看答案和解析>>

同步練習冊答案