已知等差數(shù)列{an}中,a2=8,S10=185.
(1)求數(shù)列{an}的通項公式an;
(2)若從數(shù)列{an}中依次取出第2,4,8,…,2n,…項,按原來的順序排成一個新數(shù)列{bn},試求{bn}的前n項和An,并比較An與nan的大。╪∈N*).

解:(1)數(shù)列{an}為等差數(shù)列,a2=8,S10=185∴,∴,∴an=5+(n-1)×3=3n+2.
(2)新數(shù)列的前n項和=3(2+4+8+…+2n)+2n==6(2n-1)+2n.
分析:(1)由題設(shè)條件知由此解得an=5+(n-1)×3=3n+2.
(2)由題設(shè)條件知新數(shù)列的前n項和=3(2+4+8+…+2n)+2n再由等比數(shù)列前n項和公式可以求出新數(shù)列的前n項和An
點評:本題考查數(shù)列的通項及前n項和,解題時要注意公式的靈活運用.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an},公差d不為零,a1=1,且a2,a5,a14成等比數(shù)列;
(1)求數(shù)列{an}的通項公式;
(2)設(shè)數(shù)列{bn}滿足bn=an3n-1,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}中:a3+a5+a7=9,則a5=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}滿足:a5=11,a2+a6=18.
(1)求{an}的通項公式;
(2)若bn=an+q an(q>0),求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}滿足a2=0,a6+a8=-10
(1)求數(shù)列{an}的通項公式;     
(2)求數(shù)列{|an|}的前n項和;
(3)求數(shù)列{
an2n-1
}的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知等差數(shù)列{an}中,a4a6=-4,a2+a8=0,n∈N*
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若{an}為遞增數(shù)列,請根據(jù)如圖的程序框圖,求輸出框中S的值(要求寫出解答過程).

查看答案和解析>>

同步練習冊答案