【題目】已知正方形的中心為直線 和 的交點(diǎn),正方形一邊所在直線的方程為 ,求其他三邊所在直線的方程.
【答案】解:設(shè)與直線l:x+3y-5=0平行的邊的直線方程為l1:x+3y+c=0.
由 得正方形的中心為P(-1,0),由點(diǎn)P到兩直線l,l1的距離相等,得 = 解得c=7或c=-5(舍去).
∴l(xiāng)1:x+3y+7=0.又∵正方形另兩邊所在直線與l垂直,
∴設(shè)另兩邊方程為3x-y+a=0,3x-y+b=0.
∵正方形中心到四條邊的距離相等,∴ ,得a=9或-3,
∴另兩條邊所在的直線方程為3x-y+9=0,3x-y-3=0.
∴另三邊所在的直線方程分別為3x-y+9=0,x+3y+7=0,3x-y-3=0
【解析】分別設(shè)出與已知一邊的直線平行與垂直的直線的方程,由正方形的中心到各邊的距離相等,求出直線方程.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= ,若函數(shù)g(x)=f(x)﹣m存在4個(gè)不同的零點(diǎn)x1 , x2 , x3 , x4 , 則實(shí)數(shù)m的取值范圍是 , x1x2x3x4的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知某智能手機(jī)制作完成之后還需要依次通過(guò)三道嚴(yán)格的審核程序,已知第一道審核、第二道審核、第三道審核通過(guò)的概率分別為 , , ,每道程序是相互獨(dú)立的,且一旦審核不通過(guò)就停止審核,每部手機(jī)只有三道程序都通過(guò)才能出廠銷售.
(1)求審核過(guò)程中只進(jìn)行兩道程序就停止審核的概率;
(2)現(xiàn)有3部該智能手機(jī)進(jìn)入審核,記這3部手機(jī)可以出廠銷售的部數(shù)為X,求X的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】己知(2x﹣ )5(Ⅰ)求展開式中含 項(xiàng)的系數(shù)
(Ⅱ)設(shè)(2x﹣ )5的展開式中前三項(xiàng)的二項(xiàng)式系數(shù)之和為M,(1+ax)6的展開式中各項(xiàng)系數(shù)之和為N,若4M=N,求實(shí)數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知?jiǎng)訄A 經(jīng)過(guò)點(diǎn) , .
(1)求周長(zhǎng)最小的圓的一般方程;
(2)求圓心在直線 上的圓的標(biāo)準(zhǔn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知N為自然數(shù)集,集合P={1,4,7,10,13},Q={2,4,6,8,10},則P∩ 等于( )
A.{1,7,13}
B.{4,10}
C.{1,7}
D.{0,1,3}
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ax3﹣3x2+1,若f(x)存在唯一的零點(diǎn)x0 , 且x0>0,則a的取值范圍為( )
A.(﹣∞,﹣2)
B.(﹣∞,0)
C.(2,+∞)
D.(1,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知O是邊長(zhǎng)為 的正方形ABCD的中心,點(diǎn)E、F分別是AD、BC的中點(diǎn),沿對(duì)角線AC把正方形ABCD折成直二面角D﹣AC﹣B; (Ⅰ)求∠EOF的大小;
(Ⅱ)求二面角E﹣OF﹣A的余弦值;
(Ⅲ)求點(diǎn)D到面EOF的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,四邊形ABCD是一個(gè)梯形,CD∥AB , CD=BO=1,△AOD為等腰直角三角形,O為AB的中點(diǎn),試求梯形ABCD水平放置的直觀圖的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com