【題目】若函數(shù)y=lg(3﹣4x+x2)的定義域?yàn)镸.當(dāng)x∈M時(shí),求f(x)=2x+2﹣3×4x的最值及相應(yīng)的x的值.
【答案】解:y=lg(3﹣4x+x2),
∴3﹣4x+x2>0,
解得x<1或x>3,
∴M={x|x<1,或x>3},
f(x)=2x+2﹣3×4x=4×2x﹣3×(2x)2 .
令2x=t,
∵x<1或x>3,
∴t>8或0<t<2.
∴f(t)=4t﹣3t2=﹣3t2+4t(t>8或0<t<2).
由二次函數(shù)性質(zhì)可知:
當(dāng)0<t<2時(shí),f(t)∈(﹣4, ],
當(dāng)t>8時(shí),f(t)∈(﹣∞,﹣160),
當(dāng)2x=t= ,即x=log2 時(shí),f(x)max= .
綜上可知:當(dāng)x=log2 時(shí),f(x)取到最大值為 ,無(wú)最小值
【解析】根據(jù)題意可得M={x|x2﹣4x+3>0}={x|x>3,x<1},f(x)=2x+2﹣3×4x=﹣3(2x)2+42x令t=2x , 則t>8,或0<t<2∴f(t)=﹣3t2+4t利用二次函數(shù)在區(qū)間(8,+∞)或(0,2)上的最值及x即可
【考點(diǎn)精析】利用函數(shù)的最值及其幾何意義和二次函數(shù)的性質(zhì)對(duì)題目進(jìn)行判斷即可得到答案,需要熟知利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的最大(小)值;利用圖象求函數(shù)的最大(。┲;利用函數(shù)單調(diào)性的判斷函數(shù)的最大(。┲;當(dāng)時(shí),拋物線開(kāi)口向上,函數(shù)在上遞減,在上遞增;當(dāng)時(shí),拋物線開(kāi)口向下,函數(shù)在上遞增,在上遞減.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面結(jié)論正確的是( )
①一個(gè)數(shù)列的前三項(xiàng)是1,2,3,那么這個(gè)數(shù)列的通項(xiàng)公式.
②由平面三角形的性質(zhì)推測(cè)空間四面體的性質(zhì),這是一種合理推理.
③在類(lèi)比時(shí),平面中的三角形與空間中的平行六面體作為類(lèi)比對(duì)象較為合適.
④“所有3的倍數(shù)都是9的倍數(shù),某數(shù)一定是9的倍數(shù),則一定是9的倍數(shù)”,這是三段論推理,但其結(jié)論是錯(cuò)誤的.
A. ①② B. ②③ C. ③④ D. ②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列4個(gè)結(jié)論①abc>0;②b<a+c;③4a+2b+c>0;④b2﹣4ac>0;
其中正確的結(jié)論是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知多面體如圖所示,底面為矩形,其中平面, .若, , 分別是, , 的中點(diǎn),其中.
(Ⅰ)證明: ;
(Ⅱ)若二面角的余弦值為,求的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將圓為參數(shù))上的每一點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)變?yōu)樵瓉?lái)的倍,得到曲線
(1)求出的普通方程;
(2)設(shè)直線: 與的交點(diǎn)為, ,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,求過(guò)線段的中點(diǎn)且與垂直的直線的極坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知橢圓C:(m>0)的離心率為,A,B分別為橢圓的左、右頂點(diǎn),F(xiàn)是其右焦點(diǎn),P是橢圓C上異于A、B的動(dòng)點(diǎn).
(1)求m的值及橢圓的準(zhǔn)線方程;
(2)設(shè)過(guò)點(diǎn)B且與x軸的垂直的直線交AP于點(diǎn)D,當(dāng)直線AP繞點(diǎn)A轉(zhuǎn)動(dòng)時(shí),試判斷以BD為直徑的圓與直線PF的位置關(guān)系,并加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=x|x|+bx+c(b,c∈R),給出如下四個(gè)命題:①若c=0,則f(x)為奇函數(shù);②若b=0,則函數(shù)f(x)在R上是增函數(shù);③函數(shù)y=f(x)的圖象關(guān)于點(diǎn)(0,c)成中心對(duì)稱圖形;④關(guān)于x的方程f(x)=0最多有兩個(gè)實(shí)根.其中正確的命題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若無(wú)窮數(shù)列滿足: ,對(duì)于,都有(其中為常數(shù)),則稱具有性質(zhì)“”.
(Ⅰ)若具有性質(zhì)“”,且, , ,求;
(Ⅱ)若無(wú)窮數(shù)列是等差數(shù)列,無(wú)窮數(shù)列是公比為正數(shù)的等比數(shù)列, , , ,判斷是否具有性質(zhì)“”,并說(shuō)明理由;
(Ⅲ)設(shè)既具有性質(zhì)“”,又具有性質(zhì)“”,其中, , 互質(zhì),求證: 具有性質(zhì)“”.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)若為函數(shù)的極值點(diǎn),求的值;
(Ⅱ)討論在定義域上的單調(diào)性.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com