【題目】在矩形ABCD中,AB=1,AD=2,動(dòng)點(diǎn)P在以C為圓心且與BD相切的圓上,則的最大值為(

A. B. C. -2 D. 0

【答案】A

【解析】

如圖:以A為原點(diǎn),以AB,AD所在的直線(xiàn)為x,y軸建立如圖所示的坐標(biāo)系,先求出圓的標(biāo)準(zhǔn)方程,再設(shè)點(diǎn)P的坐標(biāo)為(cosθ+1,sinθ+2),+1,從而得到結(jié)果.

如圖:以A為原點(diǎn),以AB,AD所在的直線(xiàn)為x,y軸建立如圖所示的坐標(biāo)系,

則A(0,0),B(1,0),D(0,2),C(1,2),

動(dòng)點(diǎn)P在以點(diǎn)C為圓心且與BD相切的圓上,

設(shè)圓的半徑為r,

∵BC=2,CD=1,

∴BD==

BCCD=BDr,

∴r=

圓的方程為(x﹣1)2+(y﹣2)2=,

設(shè)P,

+1

的最大值為

故選:A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某車(chē)間為了規(guī)定工時(shí)定額,需確定加工零件所花費(fèi)的時(shí)間,為此做了4次試驗(yàn),得到的數(shù)據(jù)如下:

零件的個(gè)數(shù)/個(gè)

2

3

4

5

加工的時(shí)間/小時(shí)

2.5

3

4

4.5

若加工時(shí)間與零件個(gè)數(shù)之間有較好的相關(guān)關(guān)系.

(1)求加工時(shí)間與零件個(gè)數(shù)的線(xiàn)性回歸方程

(2)試預(yù)報(bào)加工10個(gè)零件需要的時(shí)間.

附錄:參考公式:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖所示的幾何體中,正方形所在的平面與正三角形所在的平面互相垂直, ,且, 的中點(diǎn).

1)求證: 平面;

2)求面與面所成銳二面角的大小

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】探究函數(shù)的最小值,并確定取得最小值時(shí)x的值.列表如下:

x

0.5

1

1.5

1.7

1.9

2

2.1

2.2

2.3

3

4

5

7

y

8.5

5

4.17

4.05

4.005

4

4.005

4.002

4.04

4.3

5

4.8

7.57

請(qǐng)觀察表中y值隨x值變化的特點(diǎn),完成以下的問(wèn)題.

函數(shù)在區(qū)間(0,2)上遞減;

函數(shù)在區(qū)間 上遞增.

當(dāng) 時(shí), .

證明:函數(shù)在區(qū)間(0,2)遞減.

思考:函數(shù)時(shí),有最值嗎?是最大值還是最小值?此時(shí)x為何值?(直接回答結(jié)果,不需證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)是定義在R上的函數(shù),對(duì)任意實(shí)數(shù)x,有f(1﹣x)=x2﹣3x+3.

(1)求函數(shù)的解析式;

(2)若函數(shù)在g(x)=f(x)﹣(1+2m)x+1(mR)在上的最小值為﹣2,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知矩形, ,點(diǎn)為矩形內(nèi)一點(diǎn),且,設(shè).

(1)當(dāng)時(shí),求的值;

(2)求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 數(shù)列{ }的公差為1的等差數(shù)列,且a2=3,a3=5.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=an3n , 求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的中心在原點(diǎn),焦點(diǎn)、軸上,離心率為,在橢圓上有一動(dòng)點(diǎn)、的距離之和為4,

(Ⅰ) 求橢圓E的方程;

(Ⅱ) 過(guò)、作一個(gè)平行四邊形,使頂點(diǎn)、、、都在橢圓上,如圖所示.判斷四邊形能否為菱形,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓心在軸上的圓與直線(xiàn)切于點(diǎn).

(1)求圓的標(biāo)準(zhǔn)方程;

(2)已知,經(jīng)過(guò)原點(diǎn),且斜率為正數(shù)的直線(xiàn)與圓交于兩點(diǎn).

(。┣笞C: 為定值;

(ⅱ)求的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案