15.在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程$\left\{\begin{array}{l}{x=2+\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$(t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為:ρ=4cosθ.
(1)把直線l的參數(shù)方程化為極坐標(biāo)方程,把曲線C的極坐標(biāo)方程化為普通方程;
(2)求直線l與曲線C交點(diǎn)的極坐標(biāo)(ρ≥0,0≤θ<2π).

分析 (1)直線l的參數(shù)方程$\left\{\begin{array}{l}{x=2+\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$(t為參數(shù)),消去參數(shù)t化為$\sqrt{3}x-y-2\sqrt{3}$=0,把$\left\{\begin{array}{l}{x=ρcosθ}\\{y=ρsinθ}\end{array}\right.$代入即可得出,由曲線C的極坐標(biāo)方程為:ρ=4cosθ,變?yōu)棣?SUP>2=4ρcosθ,代入化為直角坐標(biāo)方程.
(2)聯(lián)立$\left\{\begin{array}{l}{\sqrt{3}x-y-2\sqrt{3}=0}\\{{x}^{2}+{y}^{2}-4x=0}\end{array}\right.$,解出再化為極坐標(biāo)(ρ≥0,0≤θ<2π)為.

解答 解;(1)直線l的參數(shù)方程$\left\{\begin{array}{l}{x=2+\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$(t為參數(shù)),消去參數(shù)t化為$\sqrt{3}x-y-2\sqrt{3}$=0,
把$\left\{\begin{array}{l}{x=ρcosθ}\\{y=ρsinθ}\end{array}\right.$代入可得:$\sqrt{3}ρcosθ-ρsinθ-2\sqrt{3}$=0,
由曲線C的極坐標(biāo)方程為:ρ=4cosθ,變?yōu)棣?SUP>2=4ρcosθ,化為x2+y2-4x=0.
(2)聯(lián)立$\left\{\begin{array}{l}{\sqrt{3}x-y-2\sqrt{3}=0}\\{{x}^{2}+{y}^{2}-4x=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=1}\\{y=-\sqrt{3}}\end{array}\right.$或$\left\{\begin{array}{l}{x=3}\\{y=\sqrt{3}}\end{array}\right.$,
∴直線l與曲線C交點(diǎn)的極坐標(biāo)(ρ≥0,0≤θ<2π)為$(2,\frac{5π}{3})$,$(2\sqrt{3},\frac{π}{6})$.

點(diǎn)評 本題考查了極坐標(biāo)與直角坐標(biāo)方程的互化、直線與曲線的交點(diǎn),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=lg[(a2-4)x2+(a-2)x+1]的定義域?yàn)镽,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若x∈N,則滿足2x-5<0的元素組成的集合中所有元素之和為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知矩形ABCD頂點(diǎn)都在半徑為R的球O的表面上,且$AB=3,BC=\sqrt{3}$,棱錐O-ABCD的體積為$3\sqrt{2}$,則R=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.函數(shù)f(x)=$\sqrt{x+1}$+$\frac{3x}{x-1}$的定義域?yàn)閧x|x≥-1且x≠1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=$\frac{{\sqrt{3}}}{2}$sin2x-cos2x-$\frac{1}{2}$,x∈R.
(Ⅰ)當(dāng)x∈[-$\frac{π}{12}$,$\frac{5π}{12}}$]時(shí),求函數(shù)f(x)的最小值和最大值;
(Ⅱ)將函數(shù)y=f(x)的圖象的橫坐標(biāo)伸長為原來的2倍,再將函數(shù)圖象向上平移1個(gè)單位,得到函數(shù)y=g(x),求函數(shù)y=|g(x)|的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)A,B是有限集,定義:A-B={x|x∈A且x∉B};|A|表示集合A中元素的個(gè)數(shù).
命題①:對任意有限集A,B,“A≠B”是“|A-B|>0”的充要條件;
命題②:對任意有限集A,B,C,有|A-C|≤|A-B|+|B-C|.(  )
A.命題①和命題②都成立B.命題①和命題②都不成立
C.命題①成立,命題②不成立D.命題①不成立,命題②成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.計(jì)算:${4^{-\frac{1}{3}}}×\root{3}{2^5}$=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知x為實(shí)數(shù),用表示不超過x的最大整數(shù),例如[1,2]=1,[-1.2]=-2,[1]=1,對于函數(shù)f(x),若存在m∈R且m∉Z,使得f(m)=f([m]),則稱函數(shù)f(x)是Ω函數(shù).
(Ⅰ)判斷函數(shù)f(x)=x2-$\frac{1}{3}$x,g(x)=sinπx是否是Ω函數(shù);(只需寫出結(jié)論)
(Ⅱ)設(shè)函數(shù)f(x)是定義R在上的周期函數(shù),其最小正周期為T,若f(x)不是Ω函數(shù),求T的最小值. 
(Ⅲ)若函數(shù)f(x)=x+$\frac{a}{x}$是Ω函數(shù),求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案