【題目】設(shè)拋物線的焦點為,過點的動直線交拋物線于不同兩點,線段中點為,射線與拋物線交于點.

(1)求點的軌跡方程;

(2)求面積的最小值.

【答案】(1);(2)

【解析】分析:1)設(shè)直線方程為,代入,消去,運用韋達定理和中點坐標公式,再運用代入法消去,即可得到的軌跡方程;(2設(shè),根據(jù)(1)可得,由點在拋物線上,化簡可得,由點到直線的距離公式,以及弦長公式,求出的面積,再構(gòu)造新函數(shù),利用導(dǎo)數(shù)即可求得的面積的最小值.

詳解:1)設(shè)直線方程為,代入

設(shè),則, .

.

設(shè),由消去得中點的軌跡方程為

2)設(shè).

點在拋物線上,得.

又∵

,點到直線的距離

.

所以, 面積

設(shè),有,故上是減函數(shù),在上是增函數(shù),因此,當(dāng)取到最小值.

所以, 面積的最小值是.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等比數(shù)列的各項為正數(shù),且.

(1)求的通項公式;

(2)設(shè),求證數(shù)列的前項和<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的幾何體中,平面.

(1)證明:平面;

(2)求平面與平面所成二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校藝術(shù)節(jié)對同一類的四項參賽作品,只評一項一等獎,在評獎揭曉前,甲、乙、丙、丁四位同學(xué)對這四項參賽作品預(yù)測如下:

甲說:“作品獲得一等獎”; 乙說:“作品獲得一等獎”;

丙說:“,兩項作品未獲得一等獎”; 丁說:“作品獲得一等獎”.

若這四位同學(xué)只有兩位說的話是對的,則獲得一等獎的作品是( )

A. 作品 B. 作品 C. 作品 D. 作品

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)曲線在點處的切線方程為

(1) 求的值;

(2) 證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】德國數(shù)學(xué)家科拉茨年提出了一個著名的猜想:任給一個正整數(shù),如果是偶數(shù),就將它減半(即);如果是奇數(shù),則將它乘(即),不斷重復(fù)這樣的運算,經(jīng)過有限步后,一定可以得到.對于科拉茨猜想,目前誰也不能證明,也不能否定.現(xiàn)在請你研究:如果對正整數(shù)(首項)按照上述規(guī)則施行變換后的第項為(注:可以多次出現(xiàn)),則的所有不同值的個數(shù)為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓=1(a>b>0)上的點P到左,右兩焦點F1,F2的距離之和為2,離心率為.

(1)求橢圓的標準方程;

(2)過右焦點F2的直線l交橢圓于A,B兩點,若y軸上一點M(0,)滿足|MA|=|MB|,求直線l的斜率k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,是邊長為3的正方形,平面,,且,. 

(1)試在線段上確定一點的位置,使得平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐與三棱錐中,都是邊長為2的等邊三角形,分別為的中點,,

(Ⅰ)試在平面內(nèi)作一條直線,當(dāng)時,均有平面(作出直線并證明);

(Ⅱ)求兩棱錐體積之和的最大值.

查看答案和解析>>

同步練習(xí)冊答案