科目:高中數(shù)學 來源: 題型:
已知a=(2cosx,cos2x),b=(sinx,-),f(x)=a·b.
(1) 求f(x)的振幅、周期,并畫出它在一個周期內(nèi)的圖象;
(2) 說明它可以由函數(shù)y=sinx的圖象經(jīng)過怎樣的變換得到.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
如圖,在平面直角坐標系xOy中,已知橢圓+=1的左、右頂點為A、B,右焦點為F.設(shè)過點T(t,m)的直線TA、TB與橢圓分別交于點M(x1,y1)、N(x2,y2),其中m>0,y1>0,y2<0.
(1) 設(shè)動點P滿足PF2-PB2=4,求點P的軌跡;
(2) 設(shè)x1=2,x2=,求點T的坐標;
(3) 設(shè)t=9,求證:直線MN必過x軸上的一定點(其坐標與m無關(guān)).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
如圖,已知橢圓C的方程為+y2=1,A、B是四條直線x=±2,y=±1所圍成的矩形的兩個頂點.
(1) 設(shè)P是橢圓C上任意一點,若,求證:動點Q(m,n)在定圓上運動,并求出定圓的方程;
(2) 若M、N是橢圓C上兩個動點,且直線OM、ON的斜率之積等于直線OA、OB的斜率之積,試探求△OMN的面積是否為定值,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
如圖,橢圓C:+=1(a>b>0)的離心率為,其左焦點到點P(2,1)的距離為.不過原點O的直線l與C相交于A,B兩點,且線段AB被直線OP平分.
(1) 求橢圓C的方程;
(2) 求△ABP面積取最大值時直線l的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
在平面直角坐標系xOy中,已知定點A(-4,0)、B(4,0),動點P與A、B連線的斜率之積為-.
(1) 求點P的軌跡方程;
(2) 設(shè)點P的軌跡與y軸負半軸交于點C.半徑為r的圓M的圓心M在線段AC的垂直平分線上,且在y軸右側(cè),圓M被y軸截得的弦長為r.
(ⅰ) 求圓M的方程;
(ⅱ) 當r變化時,是否存在定直線l與動圓M均相切?如果存在,求出定直線l的方程;如果不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com