一個(gè)等差數(shù)列{an}的前5項(xiàng)和是25,前10項(xiàng)和是100,由這些條件能否確定這個(gè)數(shù)列的通項(xiàng)公式嗎?若能,試求出通項(xiàng)公式.
分析:由題意可得5a1+10d=25,10a1+45d=100,求出 a1 和d 的值,由此求得通項(xiàng)公式為 an=a1+(n-1)d 的解析式.
解答:解:由題意可得 S5=5a1+10d=25,S10=10a1+45d=100,
解得 a1=1,d=2,
∴這個(gè)數(shù)列的通項(xiàng)公式an=a1+(n-1)d=1+2(n-1)=2n-1.
點(diǎn)評(píng):本題主要考查等差數(shù)列的定義和性質(zhì),等差數(shù)列的通項(xiàng)公式,等差數(shù)列的前n項(xiàng)和公式的應(yīng)用,求出首項(xiàng)和公差d的值,是解題的關(guān)鍵,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知一個(gè)等差數(shù)列{an}前10項(xiàng)的和是
125
7
,前20項(xiàng)的和是-
250
7

(1)求這個(gè)等差數(shù)列的前n項(xiàng)和Sn
(2)求使得Sn最大的序號(hào)n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)等差數(shù)列{an}中,
an
a2n
是一個(gè)與n無(wú)關(guān)的常數(shù),則此常數(shù)的集合為
{ 1 , 
1
2
 }
{ 1 , 
1
2
 }

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2003•海淀區(qū)一模)(1)一個(gè)等比數(shù)列{an}中,若存在ak<0,ak+1<0(k∈N),則對(duì)于任意n∈N,都有an<0;
(2)一個(gè)等差數(shù)列{an}中,若存在ak<0,ak+1<0(k∈N),則對(duì)于任意n∈N,都有an<0;
(3)一個(gè)等比數(shù)列{an}中,若存在自然數(shù)k,使ak•ak+1<0,則對(duì)于任意n∈N,都有an•an+1<0;
(4)一個(gè)等差數(shù)列{an}中,若存在ak+1>ak>0(k∈N),則對(duì)于任意n>k,都有an>0.
其中正確命題的序號(hào)是
(1)(3)(4)
(1)(3)(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果一個(gè)等差數(shù)列{an}中,a2=3,a7=6,則它的公差是( 。
A、
3
5
B、
5
3
C、-
3
5
D、-
5
3

查看答案和解析>>

同步練習(xí)冊(cè)答案