【題目】如圖,在四棱錐中,底面是菱形,且.點(diǎn)

是棱的中點(diǎn),平面與棱交于點(diǎn).

1)求證:;

2)若,且平面平面,求平面與平面所成的銳二面角的余弦值.

【答案】1)證明見(jiàn)解析;(2.

【解析】試題分析:(1)推導(dǎo)出,從而平面,由此能證明
(2)取中點(diǎn),連接,,以為原點(diǎn),、所在直線為坐標(biāo)軸建立空間直角坐標(biāo)系,利用向量法能求出平面與平面所成的二面角的余弦值.

試題解析:(1)證明:∵是菱形,∴,

平面,平面

平面,

四點(diǎn)共面,且面,

.

(2)解:取中點(diǎn),連接,,

,∴

∵平面平面,平面平面,

,

,在菱形中,∵,中點(diǎn),

,

如圖,以為原點(diǎn),、、所在直線為坐標(biāo)軸建立空間直角坐標(biāo)系

得,,,

,.

又∵,點(diǎn)是棱中點(diǎn),∴點(diǎn)是棱中點(diǎn),

,,

設(shè)平面的法向量為,

則有,取,則.

平面,∴是平面的一個(gè)法向量,

,二面角的余弦值為,

∴平面與平面所成的二面角的余弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知冪函數(shù)是單調(diào)減函數(shù),且為偶函數(shù).

(1)求的解析式;

(2)討論的奇偶性,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD是邊長(zhǎng)為2的正方形,平面ABCD⊥平面ABEFAFBE,ABBEABBE2,AF1.

Ⅰ)求證:AC⊥平面BDE;

Ⅱ)求證:AC∥平面DEF;

Ⅲ)求三棱錐ADEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】把下列演繹推理寫(xiě)成三段論的形式.

1)在標(biāo)準(zhǔn)大氣壓下,水的沸點(diǎn)是100℃,所以在標(biāo)準(zhǔn)大氣壓下把水加熱到100℃時(shí),水會(huì)沸騰;

2)一切奇數(shù)都不能被2整除, 是奇數(shù),所以不能被2整除;

3)三角函數(shù)都是周期函數(shù), 是三角函數(shù),因此是周期函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】直三棱柱ABC﹣A1B1C1中,∠BCA=90°,M,N分別是A1B1 , A1C1的中點(diǎn),BC=CA=CC1 , 則BM與AN所成角的余弦值為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義在上的奇函數(shù).

(1)求的值;

(2)當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2017118日開(kāi)始,支付寶用戶可以通過(guò)參與螞蟻森林兩種方式獲得?ǎ◥(ài)國(guó)福、富強(qiáng)福、和諧福、友善福、敬業(yè)福),除夕夜22:18,每一位提前集齊五福的用戶都將獲得一份現(xiàn)金紅包.某高校一個(gè)社團(tuán)在年后開(kāi)學(xué)后隨機(jī)調(diào)查了80位該校在讀大學(xué)生,就除夕夜22:18之前是否集齊五福進(jìn)行了一次調(diào)查(若未參與集五福的活動(dòng),則也等同于未集齊五福),得到具體數(shù)據(jù)如下表:

是否集齊五福

性別

合計(jì)

30

10

40

35

5

40

合計(jì)

65

15

80

(1)根據(jù)如上的列聯(lián)表,能否在犯錯(cuò)誤的概率不超過(guò)0.05的前提下,認(rèn)為集齊五福與性別有關(guān)”?

(2)計(jì)算這80位大學(xué)生集齊五福的頻率,并據(jù)此估算該校10000名在讀大學(xué)生中集齊五福的人數(shù);

(3)為了解集齊五福的大學(xué)生明年是否愿意繼續(xù)參加集五;顒(dòng),該大學(xué)的學(xué)生會(huì)從集齊五福的學(xué)生中,選取2位男生和3位女生逐個(gè)進(jìn)行采訪,最后再隨機(jī)選取3次采訪記錄放到該大學(xué)的官方網(wǎng)站上,求最后被選取的3次采訪對(duì)象中至少有一位男生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知冪函數(shù)fx)=xa的圖象過(guò)點(diǎn)(2,4).

(1)求函數(shù)fx)的解析式;

(2)設(shè)函數(shù)hx)=4fx)-kx-8在[5,8]上是單調(diào)函數(shù),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合Z={(x,y)|x∈[0,2],y[-1,1]}.

(1)若x,yZ,求x+y≥0的概率;

(2)若x,yR,求x+y≥0的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案