【題目】已知二次函數(shù)(其中)滿足下列3個(gè)條件:

函數(shù)的圖象過坐標(biāo)原點(diǎn);

②函數(shù)的對稱軸方程為;

③方程有兩個(gè)相等的實(shí)數(shù)根,

.

1求函數(shù)的解析式;

2)求使不等式恒成立的實(shí)數(shù)的取值范圍;

3已知函數(shù)上的最小值為,求實(shí)數(shù)的值.

【答案】1 ;(2;(3.

【解析】試題分析:(1)利用f(0)=0求出c.通過函數(shù)的對稱軸,得到a=b,通過方程f(x)=x有兩個(gè)相等的實(shí)數(shù)根,即可求函數(shù)f(x)的表達(dá)式;

(2)不等式恒成立,即,即

3,討論對稱軸與區(qū)間端點(diǎn)的關(guān)系,明確函數(shù)的最小值,求出實(shí)數(shù)的值.


試題解析:

解: (1)由題意得,即.

∵函數(shù)的對稱軸方程為,,即.

,

∵方程僅有一根,即方程僅有一根,

,即,即

(2)

又不等式img src="http://thumb.zyjl.cn/questionBank/Upload/2017/12/29/18/b2dfd3c7/SYS201712291823161438430040_DA/SYS201712291823161438430040_DA.026.png" width="68" height="27" style="-aw-left-pos:0pt; -aw-rel-hpos:column; -aw-rel-vpos:paragraph; -aw-top-pos:0pt; -aw-wrap-type:inline" />恒成立

即不等式恒成立

解得.

(3)

則函數(shù)的對稱軸方程為

當(dāng)時(shí),函數(shù)上單調(diào)遞增.

,解得,故舍去.

②當(dāng)時(shí),函數(shù)上單調(diào)遞減,在上單調(diào)遞增.

,解得(舍去)

③當(dāng)時(shí),函數(shù)上單調(diào)遞減

,解得.

綜上: .

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在上的函數(shù),如果對任意的,都有成立,則稱階伸縮函數(shù).

)若函數(shù)為二階伸縮函數(shù),且當(dāng)時(shí), ,求的值.

)若為三階伸縮函數(shù),且當(dāng)時(shí), ,求證:函數(shù)上無零點(diǎn).

)若函數(shù)階伸縮函數(shù),且當(dāng)時(shí), 的取值范圍是,求上的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】制定投資計(jì)劃時(shí),不僅要考慮可能獲得的盈利,而且要考慮可能出現(xiàn)的虧損.某投資人打算投資甲、乙兩個(gè)項(xiàng)目.根據(jù)預(yù)測,甲、乙項(xiàng)目可能的最大盈利率分別為100%50%,可能的最大虧損分別為30%10%.投資人計(jì)劃投資金額不超過10萬元,要求確?赡艿馁Y金虧損不超過1.8萬元.問投資人對甲、乙兩個(gè)項(xiàng)目各投資多少萬元,才能使可能的盈利最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【2015高考四川,文21】已知函數(shù)f(x)-2lnx+x2-2ax+a2,其中a>0.

()設(shè)g(x)為f(x)的導(dǎo)函數(shù),討論g(x)的單調(diào)性;

()證明:存在a(0,1),使得f(x)0恒成立,且f(x)=0在區(qū)間(1,+)內(nèi)有唯一解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分14分)

設(shè)橢圓的離心率為,其左焦點(diǎn)與拋物線的焦點(diǎn)相同.

1)求此橢圓的方程;

2)若過此橢圓的右焦點(diǎn)的直線與曲線只有一個(gè)交點(diǎn),則

求直線的方程;

橢圓上是否存在點(diǎn),使得,若存在,請說明一共有幾個(gè)點(diǎn);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】大西洋鮭魚每年都要逆流而上,游回產(chǎn)地產(chǎn)卵.記鮭魚的游速為,鮭魚的耗氧量的單位數(shù)為,研究中發(fā)現(xiàn)成正比,且當(dāng)時(shí),

1)求出關(guān)于的函數(shù)解析式;

2)計(jì)算一條鮭魚的游速是時(shí)耗氧量的單位數(shù);

3)當(dāng)鮭魚的游速增加時(shí),其耗氧量是原來的幾倍?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】交強(qiáng)險(xiǎn)是車主必須為機(jī)動車購買的險(xiǎn)種,若普通6座以下私家車投保交強(qiáng)險(xiǎn)第一年的費(fèi)用(基準(zhǔn)保費(fèi))統(tǒng)一為元,在下一年續(xù)保時(shí),實(shí)行的是費(fèi)率浮動機(jī)制,保費(fèi)與上一年度車輛發(fā)生道路交通事故的情況相聯(lián)系,發(fā)生交通事故的次數(shù)越多,費(fèi)率也就是越高,具體浮動情況如下表:

交強(qiáng)險(xiǎn)浮動因素和浮動費(fèi)率比率表

浮動因素

浮動比率

上一個(gè)年度未發(fā)生有責(zé)任道路交通事故

下浮10%

上兩個(gè)年度未發(fā)生有責(zé)任道路交通事故

下浮20%

上三個(gè)及以上年度未發(fā)生有責(zé)任道路交通事故

下浮30%

上一個(gè)年度發(fā)生一次有責(zé)任不涉及死亡的道路交通事故

0%

上一個(gè)年度發(fā)生兩次及兩次以上有責(zé)任道路交通事故

上浮10%

上一個(gè)年度發(fā)生有責(zé)任道路交通死亡事故

上浮30%

某機(jī)構(gòu)為了 某一品牌普通6座以下私家車的投保情況,隨機(jī)抽取了60輛車齡已滿三年的該品牌同型號私家車的下一年續(xù)保時(shí)的情況,統(tǒng)計(jì)得到了下面的表格:

類型

數(shù)量

10

5

5

20

15

5

以這60輛該品牌車的投保類型的頻率代替一輛車投保類型的概率,完成下列問題:

(1)按照我國《機(jī)動車交通事故責(zé)任強(qiáng)制保險(xiǎn)條例》汽車交強(qiáng)險(xiǎn)價(jià)格的規(guī)定, ,記為某同學(xué)家的一輛該品牌車在第四年續(xù)保時(shí)的費(fèi)用,求的分布列與數(shù)學(xué)期望;(數(shù)學(xué)期望值保留到個(gè)位數(shù)字)

(2)某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強(qiáng)險(xiǎn)保費(fèi)高于基本保費(fèi)的車輛記為事故車,假設(shè)購進(jìn)一輛事故車虧損5000元,一輛非事故車盈利10000元:

①若該銷售商購進(jìn)三輛(車齡已滿三年)該品牌二手車,求這三輛車中至多有一輛事故車的概率;

②若該銷售商一次購進(jìn)100輛(車齡已滿三年)該品牌二手車,求他獲得利潤的期望值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線與圓C:相交于A,B兩點(diǎn),弦AB中點(diǎn)為M(0,1),

(1)求實(shí)數(shù)的取值范圍以及直線的方程;

(2)若圓C上存在四個(gè)點(diǎn)到直線的距離為,求實(shí)數(shù)a的取值范圍;

(3)已知N(0,3),若圓C上存在兩個(gè)不同的點(diǎn)P,使,求實(shí)數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】醫(yī)用放射性物質(zhì)原來質(zhì)量a,每年衰減的百分比相同,當(dāng)衰減一半時(shí),所用時(shí)間是10年,根據(jù)需要,放射性物質(zhì)至少要保留原來的,否則需要更換.已知到今年為止,剩余為原來的

(1)求每年衰減的百分比;

(2)到今年為止,該放射性物質(zhì)衰減了多少年?

(3)今后至多還能用多少年?

查看答案和解析>>

同步練習(xí)冊答案