曲線x2+y|y|=1與直線y=kx有且僅有兩個(gè)公共點(diǎn),則k的取值范圍是

[  ]

A.(-∞,-1)∪(1,+∞)

B.(-∞,-1]∪[1,+∞)

C.(-1,1)

D.[-1,1]

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

點(diǎn)P是曲線x2y-2ln=0上任意一點(diǎn),求點(diǎn)P到直線yx-2的最短距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=-x3x2+(m2-1)x(x∈R),其中m>0.

(1)當(dāng)m=1時(shí),求曲線yf(x)在(1,f(1))點(diǎn)處的切線的方程;

(2)求函數(shù)f(x)的單調(diào)區(qū)間與極值;

(3)已知函數(shù)g(x)=f(x)+有三個(gè)互不相同的零點(diǎn),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆山西省高二上學(xué)期期末文科數(shù)學(xué)試卷(A)(解析版) 題型:選擇題

曲線y=x2-x+4上一點(diǎn)P處的切線的斜率為5,則點(diǎn)P處的切線方程為

A.5x-y-5=0                          B.5x-y+5=0

C.5x-y-53=0                         D.5x-y+53=0

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆黑龍江虎林高中高二下學(xué)期期中理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)f(x)=alnx-x2+1.

(1)若曲線y=f(x)在x=1處的切線方程為4x-y+b=0,求實(shí)數(shù)a和b的值;

(2)若a<0,且對任意x1、x2∈(0,+∞),都|f(x1)-f(x2)|≥|x1-x2|,求a的取值范圍.

【解析】第一問中利用f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲線y=f(x)在x=1處的切線方程為y=(a-2)(x-1),即(a-2)x-y+2-a=0,

由已知得a-2=4,2-a=b,所以a=6,b=-4.

第二問中,利用當(dāng)a<0時(shí),f′(x)<0,∴f(x)在(0,+∞)上是減函數(shù),

不妨設(shè)0<x1≤x2,則|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1,

∴|f(x1)-f(x2)|≥|x1-x2|等價(jià)于f(x1)-f(x2)≥x2-x1

即f(x1)+x1≥f(x2)+x2,結(jié)合構(gòu)造函數(shù)和導(dǎo)數(shù)的知識來解得。

(1)f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲線y=f(x)在x=1處的切線方程為y=(a-2)(x-1),即(a-2)x-y+2-a=0,

由已知得a-2=4,2-a=b,所以a=6,b=-4.

(2)當(dāng)a<0時(shí),f′(x)<0,∴f(x)在(0,+∞)上是減函數(shù),

不妨設(shè)0<x1≤x2,則|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1,

∴|f(x1)-f(x2)|≥|x1-x2|等價(jià)于f(x1)-f(x2)≥x2-x1,即f(x1)+x1≥f(x2)+x2,

令g(x)=f(x)+x=alnx-x2+x+1,g(x)在(0,+∞)上是減函數(shù),

∵g′(x)=-2x+1=(x>0),

∴-2x2+x+a≤0在x>0時(shí)恒成立,

∴1+8a≤0,a≤-,又a<0,

∴a的取值范圍是

 

查看答案和解析>>

同步練習(xí)冊答案