【題目】已知函數(shù).
(1)若函數(shù)在上單調(diào)遞增,求實(shí)數(shù)的值;
(2)定義:若直線與曲線都相切,我們稱直線為曲線、的公切線,證明:曲線與總存在公切線.
【答案】(1);(2)見解析.
【解析】
(1)求出導(dǎo)數(shù),問題轉(zhuǎn)化為在上恒成立,利用導(dǎo)數(shù)求出的最小值即可求解;
(2)分別設(shè)切點(diǎn)橫坐標(biāo)為,利用導(dǎo)數(shù)的幾何意義寫出切線方程,問題轉(zhuǎn)化為證明兩直線重合,只需滿足有解即可,利用函數(shù)的導(dǎo)數(shù)及零點(diǎn)存在性定理即可證明存在.
(1),
函數(shù)在上單調(diào)遞增等價(jià)于在上恒成立.
令,得,
所以在單調(diào)遞減,在單調(diào)遞增,則.
因?yàn)?/span>,則在上恒成立等價(jià)于在上恒成立;
又
,
所以,即.
(2)設(shè)的切點(diǎn)橫坐標(biāo)為,則
切線方程為……①
設(shè)的切點(diǎn)橫坐標(biāo)為,則,
切線方程為……②
若存在,使①②成為同一條直線,則曲線與存在公切線,由①②得消去得
即
令,則
所以,函數(shù)在區(qū)間上單調(diào)遞增,
,使得
時(shí)總有
又時(shí),
在上總有解
綜上,函數(shù)與總存在公切線.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】探月工程“嫦娥四號(hào)”探測(cè)器于2018年12月8日成功發(fā)射,實(shí)現(xiàn)了人類首次月球背面軟著陸.以嫦娥四號(hào)為任務(wù)圓滿成功為標(biāo)志,我國(guó)探月工程四期和深空探測(cè)工程全面拉開序幕.根據(jù)部署,我國(guó)探月工程到2020年前將實(shí)現(xiàn)“繞、落、回”三步走目標(biāo).為了實(shí)現(xiàn)目標(biāo),各科研團(tuán)隊(duì)進(jìn)行積極的備戰(zhàn)工作.某科研團(tuán)隊(duì)現(xiàn)正準(zhǔn)備攻克甲、乙、丙三項(xiàng)新技術(shù),甲、乙、丙三項(xiàng)新技術(shù)獨(dú)立被攻克的概率分別為,若甲、乙、丙三項(xiàng)新技術(shù)被攻克,分別可獲得科研經(jīng)費(fèi)萬,萬,萬.若其中某項(xiàng)新技術(shù)未被攻克,則該項(xiàng)新技術(shù)沒有對(duì)應(yīng)的科研經(jīng)費(fèi).
(1)求該科研團(tuán)隊(duì)獲得萬科研經(jīng)費(fèi)的概率;
(2)記該科研團(tuán)隊(duì)獲得的科研經(jīng)費(fèi)為隨機(jī)變量,求的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】互聯(lián)網(wǎng)正在改變著人們的生活方式,在日常消費(fèi)中手機(jī)支付正逐漸取代現(xiàn)金支付成為人們首選的支付方式. 某學(xué)生在暑期社會(huì)活動(dòng)中針對(duì)人們生活中的支付方式進(jìn)行了調(diào)查研究. 采用調(diào)查問卷的方式對(duì)100名18歲以上的成年人進(jìn)行了研究,發(fā)現(xiàn)共有60人以手機(jī)支付作為自己的首選支付方式,在這60人中,45歲以下的占,在仍以現(xiàn)金作為首選支付方式的人中,45歲及以上的有30人.
(1)從以現(xiàn)金作為首選支付方式的40人中,任意選取3人,求這3人至少有1人的年齡低于45歲的概率;
(2)某商家為了鼓勵(lì)人們使用手機(jī)支付,做出以下促銷活動(dòng):凡是用手機(jī)支付的消費(fèi)者,商品一律打八折. 已知某商品原價(jià)50元,以上述調(diào)查的支付方式的頻率作為消費(fèi)者購(gòu)買該商品的支付方式的概率,設(shè)銷售每件商品的消費(fèi)者的支付方式都是相互獨(dú)立的,求銷售10件該商品的銷售額的數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】拋物線的焦點(diǎn)為F,過點(diǎn)F的直線交拋物線于A,B兩點(diǎn).
(1)若,求直線AB的斜率;
(2)設(shè)點(diǎn)M在線段AB上運(yùn)動(dòng),原點(diǎn)O關(guān)于點(diǎn)M的對(duì)稱點(diǎn)為C,求四邊形OACB面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱中,側(cè)面是菱形,其對(duì)角線的交點(diǎn)為,且.
(1)求證:平面;
(2)設(shè),若直線與平面所成的角為,求二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的圖象在處的切線方程是.
(1)求的值;
(2)若函數(shù),討論的單調(diào)性與極值;
(3)證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,橢圓經(jīng)過點(diǎn),右焦點(diǎn)到右準(zhǔn)線和左頂點(diǎn)的距離相等,經(jīng)過點(diǎn)的直線交橢圓于點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)點(diǎn)是直線上在橢圓外的一點(diǎn),且,證明:點(diǎn)在定直線上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著我國(guó)經(jīng)濟(jì)的發(fā)展,居民收入逐年增長(zhǎng).某地區(qū)2014年至2018年農(nóng)村居民家庭人均純收入(單位:千元)的數(shù)據(jù)如下表:
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
年份代號(hào) | 1 | 2 | 3 | 4 | 5 |
人均純收入 | 5 | 6 | 7 | 8 | 10 |
(1)求關(guān)于的線性回歸方程;
(2)利用(1)中的回歸方程,分析2014年至2018年該地區(qū)農(nóng)村居民家庭人均純收入的變化情況,并預(yù)測(cè)2019年該地區(qū)農(nóng)村居民家庭人均純收入為多少?
附:回歸直線的斜率和截距的最小二乘估計(jì)公式分別為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市移動(dòng)公司為了提高服務(wù)質(zhì)量,決定對(duì)使用A,B兩種套餐的集團(tuán)用戶進(jìn)行調(diào)查,準(zhǔn)備從本市個(gè)人數(shù)超過1000人的大集團(tuán)和8個(gè)人數(shù)低于200人的小集團(tuán)中隨機(jī)抽取若干個(gè)集團(tuán)進(jìn)行調(diào)查,若一次抽取2個(gè)集團(tuán),全是小集團(tuán)的概率為.
求n的值;
若取出的2個(gè)集團(tuán)是同一類集團(tuán),求全為大集團(tuán)的概率;
若一次抽取4個(gè)集團(tuán),假設(shè)取出小集團(tuán)的個(gè)數(shù)為X,求X的分布列和期望.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com