分析 (Ⅰ)設(shè)等差數(shù)列{an}的首項(xiàng)為a1,從而可得$\left\{\begin{array}{l}{{S}_{5}=5{a}_{1}+5×\frac{4}{2}d=70}\\{({a}_{1}+6d)^{2}=({a}_{1}+d)({a}_{1}+21d)}\end{array}\right.$,從而解得;
(Ⅱ)化簡(jiǎn)可得Sn=6n+$\frac{n(n-1)}{2}×4$=2n(n+2),從而可得bn=$\frac{1}{{S}_{n}}$-$\frac{1}{{2}^{n}}$=$\frac{1}{2n(n+2)}$-$\frac{1}{{2}^{n}}$,利用裂項(xiàng)求和法求得,從而證明.
解答 解:(Ⅰ)設(shè)等差數(shù)列{an}的首項(xiàng)為a1,由題意得;
$\left\{\begin{array}{l}{{S}_{5}=5{a}_{1}+5×\frac{4}{2}d=70}\\{({a}_{1}+6d)^{2}=({a}_{1}+d)({a}_{1}+21d)}\end{array}\right.$,
解得,a1=6,d=4或a1=14,d=0(舍去);
故an=4n+2;
(Ⅱ)證明:∵Sn=6n+$\frac{n(n-1)}{2}×4$=2n(n+2),
∴bn=$\frac{1}{{S}_{n}}$-$\frac{1}{{2}^{n}}$=$\frac{1}{2n(n+2)}$-$\frac{1}{{2}^{n}}$,
=$\frac{1}{4}$($\frac{1}{n}$-$\frac{1}{n+2}$)-$\frac{1}{{2}^{n}}$,
故Tn=$\frac{1}{4}$(1-$\frac{1}{3}$+$\frac{1}{2}$-$\frac{1}{4}$+$\frac{1}{3}$-$\frac{1}{5}$+…+$\frac{1}{n}$-$\frac{1}{n+2}$)-($\frac{1}{2}$+$\frac{1}{4}$+…+$\frac{1}{{2}^{n}}$)
=$\frac{1}{4}$($\frac{3}{2}$-$\frac{1}{n+1}$-$\frac{1}{n+2}$)-1+$\frac{1}{{2}^{n}}$
=$\frac{1}{{2}^{n}}$-$\frac{5}{8}$-$\frac{1}{4}$($\frac{1}{n+1}$+$\frac{1}{n+2}$)<0.
點(diǎn)評(píng) 本題考查了等差數(shù)列與等比數(shù)列的應(yīng)用,同時(shí)考查了裂項(xiàng)求和法及等比數(shù)列與等差數(shù)列前n項(xiàng)和公式的應(yīng)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $f(x)=\sqrt{x^2}$,g(x)=x | B. | f(x)=x,$g(x)=\frac{x^2}{x}$ | C. | f(x)=x,$g(x)=\root{3}{x^3}$ | D. | f(x)=lnx2,g(x)=2lnx |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a>b>c | B. | b>c>a | C. | c>b>a | D. | c>a>b |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 垂直 | B. | 不垂直 | C. | 共線(xiàn) | D. | 無(wú)法確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com