已知函數(shù)f(x)對(duì)任意的實(shí)數(shù)x、y都有f(x+y) =f(x)+f(y)-1,且當(dāng)x>0 時(shí),

f(x)>1.

   (1)求證:函數(shù)f(x)在R上是增函數(shù);

   (2)若關(guān)于x的不等式的解集為{x|-3<x<2=,求f(2009)的值;

   (3)在(2)的條件下,設(shè),若數(shù)列從第k項(xiàng)開始的連續(xù)20項(xiàng)之和等于102,求k的值.

 

 

 

 

 

 

 

【答案】

 (1)證明:設(shè)x1>x2,則x1-x2>0,從而f(x1-x2)>1,即f(x1-x2)-1>0.………2分

,

故f(x)在R上是增函數(shù).…4分

(2)設(shè)2 =f(b),于是不等式為

,即.………6分

∵不等式f(x2 -ax +5a) <2的解集為{x|-3<x<2},

∴方程x2-ax+5a-b=0的兩根為-3和2,

于是,解得∴f(1)=2.………8分

在已知等式中令x=n,y=1,得f(n+1)-f(n) =1.

所以{f(n)}是首項(xiàng)為2,公差為1的等差數(shù)列.

f(n)=2+(n-1)×1=n+1,故f(2009)=2010.………10分

(3)

設(shè)從第k項(xiàng)開始的連續(xù)20項(xiàng)之和為Tk,則

當(dāng)k≥13時(shí),ak=|k-13|=k-13,Tk≥T13=0+1+2+3+…+19=190>102.      (11分)

當(dāng)k<13時(shí),ak=|k-13|=13-k.

Tk=(13-k)+(12一k)+…+1+0+1+…+(k+6)=k2一7k+112.

令kk+112=102,解得k=2或k=5.………14分

(注:當(dāng)k≥13時(shí),ak=|k一13|=k一13,令,

無(wú)正整數(shù)解.得11分)

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ex,直線l的方程為y=kx+b.
(1)求過(guò)函數(shù)圖象上的任一點(diǎn)P(t,f(t))的切線方程;
(2)若直線l是曲線y=f(x)的切線,求證:f(x)≥kx+b對(duì)任意x∈R成立;
(3)若f(x)≥kx+b對(duì)任意x∈[0,+∞)成立,求實(shí)數(shù)k、b應(yīng)滿足的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若實(shí)數(shù)x、y、m滿足|x-m|>|y-m|,則稱x比y遠(yuǎn)離m.
(1)若x2-1比1遠(yuǎn)離0,求x的取值范圍;
(2)對(duì)任意兩個(gè)不相等的正數(shù)a、b,證明:a3+b3比a2b+ab2遠(yuǎn)離2ab
ab

(3)已知函數(shù)f(x)的定義域D={{x|x≠
2
+
π
4
,k∈Z,x∈R}
.任取x∈D,f(x)等于sinx和cosx中遠(yuǎn)離0的那個(gè)值.寫出函數(shù)f(x)的解析式,并指出它的基本性質(zhì)(結(jié)論不要求證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若實(shí)數(shù)x、y、m滿足|x-m|<|y-m|,則稱x比y接近m.
(1)若x2-1比3接近0,求x的取值范圍;
(2)對(duì)任意兩個(gè)不相等的正數(shù)a、b,證明:a2b+ab2比a3+b3接近2ab
ab
;
(3)已知函數(shù)f(x)的定義域D{x|x≠kπ,k∈Z,x∈R}.任取x∈D,f(x)等于1+sinx和1-sinx中接近0的那個(gè)值.寫出函數(shù)f(x)的解析式,并指出它的奇偶性、最小正周期、最小值和單調(diào)性(結(jié)論不要求證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
ex
ex+1

(Ⅰ)證明函數(shù)y=f(x)的圖象關(guān)于點(diǎn)(0,
1
2
)對(duì)稱;
(Ⅱ)設(shè)y=f-1(x)為y=f(x)的反函數(shù),令g(x)=f-1(
x+1
x+2
),是否存在實(shí)數(shù)b
,使得任給a∈[
1
4
,
1
3
],對(duì)任意x∈(0,+∞).不等式g(x)>x-ax2
+b恒成立?若存在,求b的取值范圍;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•海淀區(qū)一模)已知函數(shù)f(x)=
1,x∈Q
0,x∈CRQ
,則f(f(x))=
1
1

下面三個(gè)命題中,所有真命題的序號(hào)是
①②③
①②③

①函數(shù)f(x)是偶函數(shù);
②任取一個(gè)不為零的有理數(shù)T,f(x+T)=f(x)對(duì)x∈R恒成立;
③存在三個(gè)點(diǎn)A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3)),使得△ABC為等邊三角形.

查看答案和解析>>

同步練習(xí)冊(cè)答案