【題目】如圖,已知在四棱錐中,底面,,,,點為棱的中點,

(1)試在棱上確定一點,使平面平面,說明理由;

(2)若為棱上一點,滿足,求二面角的余弦值.

【答案】(1)詳見解析(2)

【解析】

⑴取中點,然后證明,即可得證

⑵建立空間直角坐標系,求出平面、平面的法向量,運用夾角公式求出二面角的余弦值

(1)取中點,則中點即所求的點.理由如下:

分別為的中點,.

,..

易知四邊形ABMP為平行四邊形,所以,,

.

,平面平面.

(2)由題意知兩兩互相垂直,建立如圖所示的空間直角坐標系,

則向量,,,.

由點在棱上,設(shè),.

.

,得,因此,解得.

.

設(shè)為平面的法向量,

.

不妨設(shè),可得平面的一個法向量為.

取平面的法向量,

.

易知,二面角是銳角,

所以其余弦值為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】某市一次全市高中男生身高統(tǒng)計調(diào)查數(shù)據(jù)顯示:全市名男生的身高服從正態(tài)分布.現(xiàn)從某學校高三年級男生中隨機抽取名測量身高,測量發(fā)現(xiàn)被測學生身高全部介于之間,將測量結(jié)果按如下方式分組: , ,…, ,得到的頻率分布直方圖如圖所示.

(Ⅰ)試評估該校高三年級男生在全市高中男生中的平均身高狀況;

(Ⅱ)求這名男生身高在以上(含)的人數(shù);

(Ⅲ)在這名男生身高在以上(含)的人中任意抽取人,該人中身高排名(從高到低)在全市前名的人數(shù)記力,求的數(shù)學期望.

參考數(shù)據(jù):若,則,

,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù))有極小值.

(1)求實數(shù)的取值范圍;

(2)若函數(shù)時有唯一零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2018年秋季,我省高一年級全面實行新高考政策,為了調(diào)查學生對新政策的了解情況,準備從某校高一三個班級抽取10名學生參加調(diào)查.已知三個班級學生人數(shù)分別為40人,30人,30人.考慮使用簡單隨機抽樣、分層抽樣和系統(tǒng)抽樣三種方案,使用簡單隨機抽樣和分層抽樣時,將學生按三個班級依次統(tǒng)一編號為1,2,…,100;使用系統(tǒng)抽樣,將學生統(tǒng)一編號為1,2,…,100,并將整個編號依次分為10段.如果抽得的號碼有下列四種情況:

①7,17,27,37,47,57,67,77,87,97;②3,9,15,33,43,53,65,75,85,95;

③9,19,29,39,49,59,69,79,89,99,;④2,12,22,32,42,52,62,73,83,96.

關(guān)于上述樣本的下列結(jié)論中,正確的是( )

A. ①③都可能為分層抽樣 B. ②④都不能為分層抽樣

C. ①④都可能為系統(tǒng)抽樣 D. ②③都不能為系統(tǒng)抽樣

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某調(diào)查機構(gòu)對本市小學生課業(yè)負擔情況進行了調(diào)查,設(shè)平均每人每天做作業(yè)的時間為分鐘,有1200名小學生參加了此項調(diào)查,調(diào)查所得到的數(shù)據(jù)用程序框圖處理(如圖),若輸出的結(jié)果是840,若用樣本頻率估計概率,則平均每天做作業(yè)的時間在0~60分鐘內(nèi)的學生的概率是( )

A. 0.32 B. 0.36 C. 0.7 D. 0.84

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓O,直線l

若直線l與圓O交于不同的兩點A,B,當時,求實數(shù)k的值;

,P是直線上的動點,過P作圓O的兩條切線PC、PD,切點分別為C、D,試探究:直線CD是否過定點若存在,請求出定點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知命題函數(shù)上單調(diào)遞減;命題曲線為雙曲線.

(Ⅰ)若“”為真命題,求實數(shù)的取值范圍;

(Ⅱ)若“”為真命題,“”為假命題,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)(其中為常量,)的圖像經(jīng)過點

1)求的值;

2)當,函數(shù)的圖像恒在函數(shù)圖像的上方,求實數(shù)的取值范圍;

3)是否存在實數(shù),使得函數(shù)的定義域為,值域為?若存在,求出的值;若不存在,則說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知底面為正方形的四棱錐,各側(cè)棱長都為,底面面積為16,以為球心,2為半徑作一個球,則這個球與四棱錐相交部分的體積是( )

A. B. C. D.

【答案】C

【解析】構(gòu)造棱長為4的正方體,四棱錐O-ABCD的頂點O為正方體的中心,底面與正方體的一個底面重合.可知所求體積是正方體內(nèi)切球體積的,所以這個球與四棱錐O-ABCD相交部分的體積是: .

本題選擇C選項.

點睛:與球有關(guān)的組合體問題,一種是內(nèi)切,一種是外接.解題時要認真分析圖形,明確切點和接點的位置,確定有關(guān)元素間的數(shù)量關(guān)系,并作出合適的截面圖,求幾何體的體積,要注意分割與補形.將不規(guī)則的幾何體通過分割或補形將其轉(zhuǎn)化為規(guī)則的幾何體求解.

型】單選題
結(jié)束】
13

【題目】為第二象限角,__________

查看答案和解析>>

同步練習冊答案