給定整數(shù)n≥2,設(shè)M0(x0,y0)是拋物線y2=nx-1與直線y=x的一個(gè)交點(diǎn).試證明對任意正整數(shù)m,必存在整數(shù)k≥2,使(
xm0
,ym0
)為拋物線y2=kx-1與直線y=x的一個(gè)交點(diǎn).
證明:y2=nx-1與y=x聯(lián)立,可得x2-nx+1=0,∴x=
n2-4
2

∴x0=y0=
n2-4
2

∴x0+
1
x0
=n≥2.…(5分)
若(
xm0
,
ym0
)為拋物線y2=kx-1與直線y=x的一個(gè)交點(diǎn),則k=
xm0
+
1
xm0
.…(10分)
記km=
xm0
+
1
xm0
,由于k1=n是整數(shù),k2=
x20
+
1
x20
=(x0+
1
x0
2-2=n2-2也是整數(shù),
且km+1=km(x0+
1
x0
)-km-1=nkm-km-1,(m≥2)①
所以對于一切正整數(shù)m,km=
xm0
+
1
xm0
是正整數(shù),且km≥2現(xiàn)在對于任意正整數(shù)m,
取k=
xm0
+
1
xm0
,滿足k≥2,且使得y2=kx-1與y=x的交點(diǎn)為(
xm0
,
ym0
).…(12分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2010•江蘇模擬)f(x)是定義在D上的函數(shù),若對任何實(shí)數(shù)α∈(0,1)以及D中的任意兩數(shù)x1,x2,恒有f(αx1+(1-α)x2)≤αf(x1)+(1-α)f(x2),則稱f(x)為定義在D上的C函數(shù).
(Ⅰ)試判斷函數(shù)f1(x)=x2,f2(x)=
1x
(x<0)
中哪些是各自定義域上的C函數(shù),并說明理由;
(Ⅱ)已知f(x)是R上的C函數(shù),m是給定的正整數(shù),設(shè)an=f(n),n=0,1,2,…,m,且a0=0,am=2m,記Sf=a1+a2+…+am.對于滿足條件的任意函數(shù)f(x),試求Sf的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給定整數(shù)n≥2,設(shè)M0(x0,y0)是拋物線y2=nx-1與直線y=x的一個(gè)交點(diǎn).試證明對任意正整數(shù)m,必存在整數(shù)k≥2,使(
x
m
0
,y
m
0
)為拋物線y2=kx-1與直線y=x的一個(gè)交點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

給定整數(shù)n≥2,設(shè)M0(x0,y0)是拋物線y2=nx-1與直線y=x的一個(gè)交點(diǎn).試證明對任意正整數(shù)m,必存在整數(shù)k≥2,使(數(shù)學(xué)公式)為拋物線y2=kx-1與直線y=x的一個(gè)交點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年全國高校自主招生數(shù)學(xué)模擬試卷(四)(解析版) 題型:解答題

給定整數(shù)n≥2,設(shè)M(x,y)是拋物線y2=nx-1與直線y=x的一個(gè)交點(diǎn).試證明對任意正整數(shù)m,必存在整數(shù)k≥2,使()為拋物線y2=kx-1與直線y=x的一個(gè)交點(diǎn).

查看答案和解析>>

同步練習(xí)冊答案