(本題滿分13分)
各棱長均為2的斜三棱柱ABC—DEF中,已知BF⊥AE,
BF∩CE=O,AB=AE,連結(jié)AO。
(I)求證:AO⊥平面FEBC。
(II)求二面角B—AC—E的大小。
(III)求三棱錐B—DEF的體積。
解:(I)∵BCFE是菱形,∴BF⊥EC
又∵BF⊥AE,且AE∩ED=E∴BF⊥平面AEC
而AO平面SEC ∴BF⊥AO∵AE=AB, AB="AC " ∴AE=AC
∴AO⊥EC,且BF∩EC=O∴AO⊥平面BCFE.…………4分
(II)取AC的中點H,連結(jié)BH、OH
∵△ABC是等邊三角形 ∴BH⊥AC

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分8分)
如圖,一個圓錐形的空杯子上面放著一個半球形的冰淇淋,如果冰淇淋融化了,會溢出杯子嗎?請用你的計算數(shù)據(jù)說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)如圖,在四棱錐PABCD中,PA底面ABCD,DAB為直角,ABCD,AD=CD=2AB,E、F分別為PC、CD的中點.
(Ⅰ)試證:AB平面BEF
(Ⅱ)設(shè)PAk ·AB,若平面與平面的夾角大于,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分10分)如圖,已知都是邊長為的等邊三角形,且平面平面,過點平面,且
(1)求證:平面;
(2)求直線與平面所成角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

、如圖,已知四棱錐中,底面是直角梯形,,,,平面,. 
(1)求證:平面;
(2)求證:平面
(3)若M是PC的中點,求三棱錐M—ACD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)在棱長為的正方體中,是線段的中點,.
(Ⅰ) 求證:^;(Ⅱ) 求證:∥平面;(Ⅲ) 求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分14分)如圖,正方形的邊長都是1,平面平面,點上移動,點上移動,若

(I)求的長;
(II)為何值時,的長最;
(III)當的長最小時,求面與面所成銳二面角余弦值的大小.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,P為△ABC所在平面外一點,AP=AC,BP=BC,D為PC中點,直線PC與平面ABD垂直嗎?為什么?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

一個幾何體的三視圖如圖所示:其中,主視圖中大三角形的邊長是2的正三角形,俯視圖為正六邊形,那么該幾何體的體積為            .

查看答案和解析>>

同步練習冊答案