已知圓C的方程為x2+(y-4)2=4,點O是坐標原點.直線l:y=kx與圓C交于M,N兩點.
(1)求k的取值范圍.
(2)設(shè)Q(m,n)是線段MN上的點,且=+.請將n表示為m的函數(shù).
(1)將y=kx代入x2+(y-4)2=4中,得(1+k2)x2-8kx+12=0.(*)
由Δ=(-8k)2-4(1+k2)×12>0,得k2>3.
所以,k的取值范圍是(-∞,-)∪(,+∞).
(2)因為M,N在直線l上,可設(shè)點M,N的坐標分別為(x1,kx1),(x2,kx2),則|OM|2=(1+k2),|ON|2=(1+k2),
又|OQ|2=m2+n2=(1+k2)m2.
由=+,得
=+,
即=+=.
由(*)式可知,x1+x2=,x1x2=,
所以m2=.
因為點Q在直線y=kx上,所以k=,代入m2=中并化簡,得5n2-3m2=36.
由m2=及k2>3,可知0<m2<3,
即m∈(-,0)∪(0,).
根據(jù)題意,點Q在圓C內(nèi),則n>0,
所以n==.
于是,n與m的函數(shù)關(guān)系為n=
(m∈(-,0)∪(0,)).
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
x2 |
4 |
y2 |
12 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
x2 |
a2 |
y2 |
b2 |
1 |
2 |
OP |
OQ |
5 |
2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com