設(shè)雙曲線的左、右頂點分別為A1,A2垂直于x軸的直線m與雙曲線C交于不同的兩點p,Q.
(1)若直線m與x軸正半軸的交點為T,且,求點T的坐標;
(2)求直線A1P與A2Q的交點M的軌跡E的方程.
【答案】分析:(1)利用已知,得到P的坐標滿足的等式,又點P在雙曲線上得到p的坐標滿足的另一個等式,解方程組求出p的坐標,進一步得到T的坐標.
(2)利用A1,P,M三點共線,得:,由A2,Q,M三點共線,
從中得到,又P(x,y)在雙曲線上,
代入雙曲線方程求出軌跡方程.
解答:解:(1)由題意得,設(shè)P(x,y),Q(x,-y),

,
即x2-y2=3,①…(3分)
又P(x,y)在雙曲線上,則.②
聯(lián)立①、②,解得:x=±2,由題意,x>0,
∴x=2,
∴點T的坐標為(2,0)…(6分)
(2)設(shè)直線A1P與A2Q的交點M的坐標為(x,y),
由A1,P,M三點共線,得:,①
由A2,Q,M三點共線,得:,②
聯(lián)立①、②,解得:.…(9分)
∵P(x,y)在雙曲線上,

∴軌跡E的方程為.…(12分)
點評:本題主要考查了直線與圓錐曲線的綜合問題,考查了學(xué)生對解析幾何學(xué)知識的綜合運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)MN是雙曲線
x2
4
-
y2
3
=1
的弦,且MN與x軸垂直,A1、A2是雙曲線的左、右頂點.
(Ⅰ)求直線MA1和NA2的交點的軌跡C的方程;
(Ⅱ)設(shè)直線y=x-1與軌跡C交于A、B兩點,若軌跡C上的點P滿足
.
OP
.
OA
.
OB
(O為坐標原點,λ,μ∈R)
求證:λ2+μ2-
10
7
λμ
為定值,并求出這個定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•日照一模)已知離心率為
4
5
的橢圓的中心在原點,焦點在x軸上,雙曲線以橢圓的長軸為實軸,短軸為虛軸,且焦距為2
34

(I)求橢圓及雙曲線的方程;
(Ⅱ)設(shè)橢圓的左、右頂點分別為A,B,在第二象限內(nèi)取雙曲線上一點P,連結(jié)BP交橢圓于點M,連結(jié)PA并延長交橢圓于點N,若
BM
=
MP
.求四邊形ANBM的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:模擬題 題型:解答題

設(shè)雙曲線的左、右頂點分別為A1、A2,點P(x1,y1)、Q(x2,-y1)是雙曲線上不同的兩個動點。
(1)求直線A1P與A2Q交點的軌跡E的方程;
(2)是否存在圓心在原點的圓,使得該圓的任意一條切線與軌跡E恒有兩個交點A、B,且?若存在,求出該圓的方程;若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:模擬題 題型:解答題

設(shè)雙曲線的左、右頂點分別為A1、A2,點P(x1,y1),Q(x1,-y1)是雙曲線上不同的兩個動點。
 (1)求直線A1P與A2Q交點的軌跡E的方程;
 (2)是否存在圓心在原點的圓,使得該圓的任意一條切線與軌跡E恒有兩個交點A、B,且?若存在,求出該圓的方程;若不存在,說明理由。

查看答案和解析>>

同步練習(xí)冊答案