若復(fù)數(shù)z滿足
z(1-i)
1+2i
=2-i
,則z=
1
2
+
7
2
i
1
2
+
7
2
i
分析:復(fù)數(shù)方程的兩邊同乘
1+2i
1-i
,左邊化為z,右邊通過(guò)復(fù)數(shù)的分母的實(shí)數(shù)化,求解即可.
解答:解:復(fù)數(shù)z滿足
z(1-i)
1+2i
=2-i

所以
z(1-i)
1+2i
1+2i
1-i
=(2-i)•
1+2i
1-i

即z=(2-i)•
1+2i
1-i
=
4+3i
1-i
=
(4+3i)(1+i)
(1-i)(1+i)
=
1+7i
2
=
1
2
+
7
2
i

故答案為:
1
2
+
7
2
i
點(diǎn)評(píng):本題考查復(fù)數(shù)代數(shù)形式的混合運(yùn)算,復(fù)數(shù)方程的求解,考查計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于以下各命題:
(1)歸納推理特征是由部分到整體、特殊到一般;類(lèi)比推理特征是由特殊到特殊;演繹推理特征是由一般到特殊.
(2)綜合法是一種順推法,由因?qū)Ч环治龇ㄊ且环N逆推法,執(zhí)果索因.
(3)若i為虛數(shù)單位,則3+4i>1+4i;
(4)若復(fù)數(shù)z滿足
.
z-1+2i 
  
.
=4,則它的對(duì)應(yīng)點(diǎn)Z的軌跡是以(1,-2)為圓心,半徑為4的圓.則其中所有正確的命題序號(hào)是
(1)(2)(4)
(1)(2)(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若復(fù)數(shù)z滿足z=1-iz(i是虛數(shù)單位),則z=
1
2
-
1
2
i
1
2
-
1
2
i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在復(fù)平面內(nèi),若復(fù)數(shù)z滿足|z+1|=|z-i|,則z所對(duì)應(yīng)的點(diǎn)的集合構(gòu)成的圖形是
第三、四象限角的平分線
第三、四象限角的平分線

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若復(fù)數(shù)z滿足
.
z
+1=
1+ i
z
,則z=
i-2+i或1+i
i-2+i或1+i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若復(fù)數(shù)z滿足|z+1|+|z-1|=2,則|z+i-1|的最小值是
1
1

查看答案和解析>>

同步練習(xí)冊(cè)答案