(1)甲盒中有紅,黑,白三種顏色的球各3個,乙盒子中有黃,黑,白三種顏色的球各2個,從兩個盒子中各取1個球,求取出的兩個球是不同顏色的概率。
(2)在單位圓的圓周上隨機(jī)取三點A、B、C,求是銳角三角形的概率。
(1)(2)

試題分析:(1) 解:(1)設(shè)A=“取出的兩球是相同顏色”,B=“取出的兩球是不同顏色”,則事件A的概率為:  P(A)=!∮捎谑录嗀與事件B是對立事件,所以事件B的概率為:
P(B)=1-P(A)=1-
(2)記的三內(nèi)角分別為,事件A表示“是銳角三角形”,則試驗的全部結(jié)果組成集合

因為是銳角三角形的條件是

所以事件A構(gòu)成集合

所求概率為
。
點評:古典概型概率首先找到所有基本事件總數(shù)與滿足題意要求的基本事件種數(shù),求其比值即可;幾何概型概率通常找長度比,面積比或體積比
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

從裝有5個紅球和3個白球的口袋內(nèi)任取3個球,那么互斥而不對立的事件是(  )
A.至少有一個紅球與都是紅球
B.至少有一個紅球與都是白球
C.至少有一個紅球與至少有一個白球
D.恰有一個紅球與恰有二個紅球

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

先后隨機(jī)投擲2枚正方體骰子,其中表示第枚骰子出現(xiàn)的點數(shù),表示第枚骰子出現(xiàn)的點數(shù). 
(Ⅰ)求點在直線上的概率;  
(Ⅱ)求點滿足的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)是A的對立事件,是B的對立事件。若和事件A+B發(fā)生的概率為0.4,則積事件·發(fā)生的概率為(     )
A.0.24B.0.36C.0.4D.0.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

盒子中有大小相同的3只白球,1只黑球,若從中隨機(jī)地摸出兩只球,兩只球顏色不同的概率是        .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若連續(xù)擲兩次骰子,第一次擲得的點數(shù)為m,第二次擲得的點數(shù)為n,則點落在圓x2y2=16內(nèi)的概率是.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

箱子里有5個黑球,4個白球,每次隨機(jī)取出一個球,若取出黑球,則放回箱中,重新取球;若取出白球,則停止取球,那么在第4次取球之后停止的概率為 (     ) 
A.B.()3×C.×D.×()3×

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

電子鐘一天顯示的時間是從00:00到23:59的每一時刻都由四個數(shù)字組成,則一天中任一時刻的四個數(shù)字之和為23的概率為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

甲乙二人玩猜數(shù)字游戲,先由甲任想一數(shù)字,記為a,再由乙猜甲剛才想的數(shù)字,把乙猜出的數(shù)字記為b,且a,b∈{1,2,3},若|a-b| ≤ 1,則稱甲乙“心有靈犀”,現(xiàn)任意找兩個人玩這個游戲,則他們“心有靈犀”的概率為
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案