分12分)已知橢圓過點(diǎn),且離心率。

   (1)求橢圓方程;

   (2)若直線與橢圓交于不同的兩點(diǎn)、,且線段的垂直平分線過定點(diǎn),求的取值范圍。

 

【答案】

(1)橢圓的方程為

 (2)的取值范圍為

【解析】解:(1)由題意橢圓的離心率

        

∴橢圓方程為……2分

又點(diǎn)在橢圓上

     ∴橢圓的方程為(4分)

(2)設(shè)

消去并整理得……6分

∵直線與橢圓有兩個(gè)交點(diǎn)

,即……8分

中點(diǎn)的坐標(biāo)為……10分

設(shè)的垂直平分線方程:

……12分

將上式代入得

   即 

的取值范圍為…………(14分)

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)

已知橢圓(a>b>0)的離心率為,以原點(diǎn)為圓心。橢圓短半軸長半徑的

圓與直線y=x+2相切,

(Ⅰ)求a與b;w.w.w.k.s.5.u.c.o.m       

(Ⅱ)設(shè)該橢圓的左,右焦點(diǎn)分別為,直線且與x軸垂直,動(dòng)直線與y軸垂直,與點(diǎn)p..求線段P垂直平分線與的交點(diǎn)M的軌跡方程,并指明曲線類型。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年內(nèi)蒙古呼倫貝爾市高三第三次模擬考試文科數(shù)學(xué)試卷 題型:解答題

(本小題共12分)

已知橢圓過點(diǎn),且離心率

(Ⅰ)求橢圓方程;

(Ⅱ)若直線與橢圓交于不同的兩點(diǎn),且線段的垂直平分線過定點(diǎn),求的取值范圍。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年河南省洛陽市高三上學(xué)期期末考試?yán)砜茢?shù)學(xué) 題型:解答題

(本小題滿分12分)

    已知橢圓E:(a>b>0)的離心率e=,左、右焦點(diǎn)分別為F1、F2,點(diǎn)P(2,),點(diǎn)F2在線段PF1的中垂線上

   (1)求橢圓E的方程;

   (2)設(shè)l1l2是過點(diǎn)G(,0)且互相垂直的兩條直線,l1交E于A, B兩點(diǎn),l2交E于C,D兩點(diǎn),求l1的斜率k的取值范圍;

   (3)在(2)的條件下,設(shè)AB,CD的中點(diǎn)分別為M,N,試問直線MN是否恒過定點(diǎn)?

若經(jīng)過,求出該定點(diǎn)坐標(biāo);若不經(jīng)過,請(qǐng)說明理由。

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年山東省濟(jì)南市高三一模數(shù)學(xué)理卷 題型:解答題

((本小題滿分12分)

已知橢圓的右焦點(diǎn)為F,離心率,橢圓C上的點(diǎn)到F的距離的最大值為,直線l過點(diǎn)F與橢圓C交于不同的兩點(diǎn)A、B.

(1) 求橢圓C的方程;

(2) 若,求直線l的方程.

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案