如圖,正方體ABCD-A1B1C1D1中,E,F(xiàn)分別為棱DD1,AB上的點(diǎn).已知下列判斷:①A1C⊥平面B1EF;②△B1EF在側(cè)面BCC1B1上  的正投影是面積為定值的三角形;③在平面A1B1C1D1內(nèi)總存在與平面B1EF平行的直線;④平 面B1EF與平面ABCD所成的二面角(銳角)的大小與點(diǎn)E的位置有關(guān),與點(diǎn)F的位置無關(guān),其中正確判斷的個(gè)數(shù)有( )

A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
【答案】分析:由正方體的結(jié)構(gòu)特征,對(duì)所給的幾個(gè)命題用線面,面面之間的位置關(guān)系直接判斷正誤即可
解答:解:如圖
對(duì)于①A1C⊥平面B1EF,不一定成立,因?yàn)锳1C⊥平面AC1D,而兩個(gè)平面面B1EF與面AC1D不一定平行.
對(duì)于②△B1EF在側(cè)面BCC1B1上  的正投影是面積為定值的三角形,此是一個(gè)正確的結(jié)論,因?yàn)槠渫队叭切蔚囊贿吺抢釨B1,而E點(diǎn)在面上的投影到此棱BB1的距離是定值,故正確;
對(duì)于③在平面A1B1C1D1內(nèi)總存在與平面B1EF平行的直線,此兩平面相交,一個(gè)面內(nèi)平行于兩個(gè)平面的交線一定平行于另一個(gè)平面,此結(jié)論正確;
對(duì)于④平 面B1EF與平面ABCD所成的二面角(銳角)的大小與點(diǎn)E的位置有關(guān),與點(diǎn)F的位置無關(guān),此結(jié)論不對(duì),與兩者都有關(guān)系,可代入幾個(gè)特殊點(diǎn)進(jìn)行驗(yàn)證,如F與A重合,E與D重合時(shí)的二面角與F與B重合,E與D重合時(shí)的情況就不一樣.故此命題不正確
綜上,②③是正確的
故選B
點(diǎn)評(píng):本題考點(diǎn)是棱柱的結(jié)構(gòu)特征,考查對(duì)正方體的幾何特征的了解,以及線面垂直,線面平行等位置關(guān)系的判定,二面角的求法等知識(shí),涉及到的知識(shí)點(diǎn)較多,綜合性強(qiáng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正方體ABCD-A1B1C1D1的棱長為a,它的各個(gè)頂點(diǎn)都在球O的球面上,問球O的表面積.
(1) 如果球O和這個(gè)正方體的六個(gè)面都相切,則有S=
 

(2)如果球O和這個(gè)正方體的各條棱都相切,則有S=
 

精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正方體ABCD-A1B1C1D1中,E,F(xiàn)分別為BB1和A1D1的中點(diǎn).證明:向量
A1B
、
B1C
EF
是共面向量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正方體ABCD-A1B1C1D1棱長為8,E、F分別為AD1,CD1中點(diǎn),G、H分別為棱DA,DC上動(dòng)點(diǎn),且EH⊥FG.
(1)求GH長的取值范圍;
(2)當(dāng)GH取得最小值時(shí),求證:EH與FG共面;并求出此時(shí)EH與FG的交點(diǎn)P到直線B1B的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正方體ABCD-A1B1C1D1中,若E、F、G分別為棱BC、C1C、B1C1的中點(diǎn),O1、O2分別為四邊形ADD1A1、A1B1C1D1的中心,則下列各組中的四個(gè)點(diǎn)不在同一個(gè)平面上的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,正方體ABCD-A1B1C1D1中,E、F、G、H分別是所在棱的三等分點(diǎn),且BF=DE=C1G=C1H=
13
AB

(1)證明:直線EH與FG共面;
(2)若正方體的棱長為3,求幾何體GHC1-EFC的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案