已知x,y滿足線性約束條件
x-y+1≥0
x+y-2≤0
x+4y+1≥0
,若
a
=(x,-2),
b
=(1,y),則z=
a
b
的最大值是( 。
A.-1B.-
5
2
C.7D.5
由題意可得,z=
a
b
=x-2y
由z=x-2y,可得y=
1
2
x-
1
2
z
,則-
1
2
z
表示直線在y軸上的截,則截距越大,z越小
作出不等式組表示的平面區(qū)域,如圖所示
直線z=x-2y過點(diǎn)C時(shí),z取得最大值
x+4y+1=0
x+y-2=0
可得C(3,-1)
此時(shí)z=5
故選D
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)z=2y-2x+4,式中x,y滿足條件
0≤x≤1
0≤y≤2
2y-x≥1
,求z的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

1.某家俱公司生產(chǎn)甲、乙兩種型號(hào)的組合柜,每種柜的制造白坯時(shí)間、油漆時(shí)間及有關(guān)數(shù)據(jù)如下:
產(chǎn)品
時(shí)間
工藝要求
生產(chǎn)能力臺(tái)時(shí)/天
制白坯時(shí)間612120
油漆時(shí)間8464
單位利潤(rùn)200240
問該公司如何安排這兩種產(chǎn)品的生產(chǎn),才能獲得最大的利潤(rùn).最大利潤(rùn)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知直線y=x+b與平面區(qū)域C:
|x|≤2
|y|≤2
的邊界交于A,B兩點(diǎn),若|AB|≥2
2
,則b的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列各二元一次不等式組能表示如圖所示陰影部分的是( 。
A.
x≤2
2x-y+4≤0
B.
0≤x≤2
2x-y+4≤0
C.
x≤0
y≤2
2x-y+4≥0
D.
x≤0
0≤y≤2
2x-y+4≥0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

點(diǎn)P(x,y)在不等式組
y≤2x
y≥-x
x≤2
表示的平面區(qū)域內(nèi),則z=x+y的最大值為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)x,y滿足{(x,y)丨x-y≥-1},則z=x+y(  )
A.有最小值2,最大值3
B.有最小值2,無最大值
C.有最大值3,無最小值
D.既無最大值,也無最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若實(shí)數(shù)x,y滿足條件
x-y+1≥0
x+y≥2
x≤1
,則2x+y的最大值為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)不等式組
0≤x≤2
0≤y≤2
,表示的平面區(qū)域?yàn)镈,在區(qū)域D內(nèi)隨機(jī)取一個(gè)點(diǎn),則此點(diǎn)到坐標(biāo)原點(diǎn)的距離大于2的概率是( 。
A.
π
4
B.
π-2
2
C.
π
6
D.
4-π
4

查看答案和解析>>

同步練習(xí)冊(cè)答案