【題目】設(shè)函數(shù),g(x)=x2+bx,若y=f(x)的圖象與y=g(x)的圖象有且僅有兩個不同的公共點(diǎn)A(x1,y1),B(x2,y2),則下列判斷正確的是( )
A.,B.,
C.,D.,
【答案】A
【解析】
作出兩函數(shù)圖象,根據(jù)圖象的對稱關(guān)系得出答案.
解:函數(shù),g(x)=x2+bx,
在同一坐標(biāo)系中分別畫出兩個函數(shù)的圖象,
∴f(x)與g(x)在第二象限必有一個公共點(diǎn),不妨設(shè)為A(x1,y1),
∵f(x)與g(x)有且僅有兩個不同的公共點(diǎn),
∴g(x)與f(x)在第四象限相切,不妨設(shè)切點(diǎn)為B(x2,y2),
作出點(diǎn)A關(guān)于原點(diǎn)的對稱點(diǎn)C,則C點(diǎn)坐標(biāo)為(-x1,-y1),
由圖象知-x1<x2,-y1<y2,即x1+x2>0,y1+y2>0,
故選:A.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為,離心率,且橢圓的短軸長為2.
(1)球橢圓的標(biāo)準(zhǔn)方程;
(2)已知直線過右焦點(diǎn),且它們的斜率乘積為,設(shè)分別與橢圓交于點(diǎn)和.
①求的值;
②設(shè)的中點(diǎn),的中點(diǎn)為,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著我國經(jīng)濟(jì)的發(fā)展,居民的儲蓄存款逐年增長。設(shè)某地區(qū)城鄉(xiāng)居民人民幣儲蓄存款(單位:億元)的數(shù)據(jù)如下:
年份 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
年份代號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
儲蓄存款 | 3.4 | 3.6 | 4.5 | 4.9 | 5.5 | 6.1 | 7.0 |
(1)求關(guān)于的線性回歸方程;
(2)2018年城鄉(xiāng)居民儲蓄存款前五名中,有三男和兩女,F(xiàn)從這5人中隨機(jī)選出2人參加某訪談節(jié)目,求選中的2人性別不同的概率。
附:回歸直線的斜率和截距的最小二乘估計公式分別為:,。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某購物中心為了了解顧客使用新推出的某購物卡的顧客的年齡分布情況,隨機(jī)調(diào)查了位到購物中心購物的顧客年齡,并整理后畫出頻率分布直方圖如圖所示,年齡落在區(qū)間內(nèi)的頻率之比為.
(1) 求顧客年齡值落在區(qū)間內(nèi)的頻率;
(2) 擬利用分層抽樣從年齡在的顧客中選取人召開一個座談會,現(xiàn)從這人中選出人,求這兩人在不同年齡組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某單位有2000名職工,老年、中年、青年分布在管理、技術(shù)開發(fā)、營銷、生產(chǎn)各部門中,如下表所示:
人數(shù) | 管理 | 技術(shù)開發(fā) | 營銷 | 生產(chǎn) | 共計 |
老年 | 40 | 40 | 40 | 80 | 200 |
中年 | 80 | 120 | 160 | 240 | 600 |
青年 | 40 | 160 | 280 | 720 | 1 200 |
小計 | 160 | 320 | 480 | 1 040 | 2 000 |
(1)若要抽取40人調(diào)查身體狀況,則應(yīng)怎樣抽樣?
(2)若要開一個25人的討論單位發(fā)展與薪金調(diào)整方面的座談會,則應(yīng)怎樣抽選出席人?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為、,圓經(jīng)過橢圓的兩個焦點(diǎn)和兩個頂點(diǎn),點(diǎn)在橢圓上,且,.
(Ⅰ)求橢圓的方程和點(diǎn)的坐標(biāo);
(Ⅱ)過點(diǎn)的直線與圓相交于、兩點(diǎn),過點(diǎn)與垂直的直線與橢圓相交于另一點(diǎn),求的面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某城市擬在矩形區(qū)域內(nèi)修建兒童樂園,已知百米,百米,點(diǎn)E,N分別在AD,BC上,梯形為水上樂園;將梯形EABN分成三個活動區(qū)域,在上,且點(diǎn)B,E關(guān)于MN對稱.現(xiàn)需要修建兩道柵欄ME,MN將三個活動區(qū)域隔開.設(shè),兩道柵欄的總長度.
(1)求的函數(shù)表達(dá)式,并求出函數(shù)的定義域;
(2)求的最小值及此時的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知:,橢圓:,為橢圓右頂點(diǎn).過原點(diǎn)且異于坐標(biāo)軸的直線與橢圓交于,兩點(diǎn),直線與的另一交點(diǎn)為,直線與的另一交點(diǎn)為,其中.設(shè)直線,的斜率分別為,.
(Ⅰ)求的值;
(Ⅱ)記直線,的斜率分別為,,是否存在常數(shù),使得?若存在,求值;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com