已知雙曲線-=1的焦點為F1、F2,點M在雙曲線上且MF1⊥x軸,則F1到直線F2M的距離為(    )

A.            B.             C.             D.

解析:∵c2=a2+b2=6+3=9,

    ∴c=3.

    ∴F1(-3,0)、F2(3,0).

    當(dāng)x=-3時,-=1.

    ∴y=±,即M(-3,±).

    ∴|MF2|=.

    設(shè)F1N⊥MF2于N,則|MF2|·|F1N|=|MF1|·|F1F2|.

    ∴|F1N|===.故選C.

答案:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線C:
x2
9
-
y2
16
=1
的左、右焦 點分別為F1、F2,P為C的右支上一點,且|
PF2
|=|
F1F2
|,則△PF1F2
的面積等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
cos2θ
-
y2
sin2θ
=1
(θ為銳角)的右焦為F,P是右支上任意一點,以P為圓心,PF長為半徑的圓在右準(zhǔn)線上截得的弦長恰好等于|PF|,則θ的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年貴州省高三第一次月考文科數(shù)學(xué) 題型:解答題

(本小題滿分12分)已知橢圓的方程為 ,雙曲線的左、右焦

 

點分別是的左、右頂點,而的左、右頂點分別是的左、右焦點.

(1)求雙曲線的方程;                                             

(2)若直線與雙曲線C2恒有兩個不同的交點A和B,求的范圍。

 

查看答案和解析>>

同步練習(xí)冊答案