(幾何證明選講選做題)如圖,AB為⊙O的直徑,C為⊙O上一點(diǎn),AP和過(guò)C的切線(xiàn)互相垂直,垂足為P,過(guò)B的切線(xiàn)交過(guò)C的切線(xiàn)于T,PB交⊙O于Q,若∠BTC=120°,AB=4,則PQ•PB=
3
3
分析:連接AC、AB、OC,利用切線(xiàn)的性質(zhì)定理可得:在四邊形OBTC中,∠OCT=∠OBT=90°,從而得到∠COB=180°-120°=60°,故△OBC是等邊三角形.接下來(lái)Rt△ABC中,利用三角函數(shù)定義得AC=ABsin60°=2
3
,再在Rt△PAC中,算出PC=ACcos60°=
3
,最后利用切割線(xiàn)定理得到PQ•PB=PC2=3.
解答:解:連接AC、AB、OC,
∵PT與圓O相切于點(diǎn)C,∴OC⊥PT,同理可得BT⊥AB
四邊形OBTC中,∠OCT=∠OBT=90°
∴∠COB+∠CTB=180°,可得∠COB=180°-120°=60°
∵OC=OB,∴△OBC是等邊三角形,可得∠OBC=60°
∵AB是圓O的直徑,∴AC⊥BC,
Rt△ABC中,AB=4,可得AC=ABsin60°=2
3

∵PC與圓O相切于點(diǎn)C,∴∠PCA=∠CBA=60°
∵AP⊥PC,∴Rt△PAC中,PC=ACcos60°=
3

∵PC與圓O相切于點(diǎn)C,PQB是圓O的割線(xiàn)
∴PQ•PB=PC2=3
故答案為:3
點(diǎn)評(píng):本題借助于圓的切線(xiàn)和含有60°的直角三角形,求切線(xiàn)長(zhǎng)的值,著重考查了直角三角形中三角函數(shù)的定義、四邊形內(nèi)角和與圓中的比例線(xiàn)段等知識(shí),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(幾何證明選講選做題)
自圓O外一點(diǎn)P引切線(xiàn)與圓切于點(diǎn)A,M為PA中點(diǎn),過(guò)M引割線(xiàn)交圓于B,C兩點(diǎn).
求證:∠MCP=∠MPB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(幾何證明選講選做題)如圖,四邊形ABCD內(nèi)接于⊙O,AB為⊙O的直徑,直線(xiàn)MN切⊙O于D,∠MDA=60°,則∠BCD=
150°
150°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(考生注意:請(qǐng)?jiān)谙铝腥}中任選一題作答,如果多做,則按所做的第一題評(píng)分)
(1)(幾何證明選講選做題)如圖,點(diǎn)A,B,C是圓O上的點(diǎn),且BC=6,∠BAC=120°,則圓O的面積等于
12π
12π

(2)(不等式選講選做題)若存在實(shí)數(shù)x滿(mǎn)足|x-3|+|x-m|<5,則實(shí)數(shù)m的取值范圍為
(-2,8)
(-2,8)

(3)(極坐標(biāo)與參數(shù)方程選講選做題)設(shè)曲線(xiàn)C的參數(shù)方程為
x=2+3cosθ
y=-1+3sinθ
(θ為參數(shù)),直線(xiàn)l的方程為x-3y+2=0,則曲線(xiàn)C上到直線(xiàn)l距離為
7
10
10
的點(diǎn)的個(gè)數(shù)有
2
2
個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(幾何證明選講選做題)
如圖,在Rt△ABC中,∠C=90°,E為AB上一點(diǎn),以BE為直徑作圓O剛好與AC相切于點(diǎn)D,若AB:BC=2:1,  CD=
3
,則圓O的半徑長(zhǎng)為
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)(幾何證明選講選做題)
如圖,AD為圓O直徑,BC切圓O于點(diǎn)E,AB⊥BC,DC⊥BC,AB=4,DC=1,則AD等于
 

查看答案和解析>>

同步練習(xí)冊(cè)答案