已知函數(shù)f(x)=
ax+1
x+2

(1)若a=1,判斷函數(shù)f(x)在(-2,+∞)上的單調(diào)性并用定義證明;
(2)若函數(shù)f(x)=
ax+1
x+2
在(-2,+∞)上是增函數(shù),求實(shí)數(shù)a的取值范圍.
分析:(1)a=1,解析式明確,直接根據(jù)定義判斷并證明單調(diào)性即可.
(2)受第一問的啟發(fā),可由單調(diào)性知道f(x1)-f(x2)的符號(hào),從而列出關(guān)于a的不等式.
解答:解:(1)當(dāng)a=1時(shí),f(x)=
x+1
x+2
,函數(shù)f(x)在(-2,+∞)上單調(diào)遞增.
下面證明:
設(shè)-2<x1<x2
f(x1)-f(x2)=
x1+1
x1+2
-
x2+1
x2+2
=
x1-x2
(x1+2)(x2+2)

∵-2<x1<x2
∴x1-x2<0,x1+2>0,x2+2>0,
∴f(x1)-f(x2)<0,即f(x1)<f(x2
所以函數(shù)f(x)在(-2,+∞)上單調(diào)遞增.
(2)設(shè)-2<x1<x2,
因?yàn)楹瘮?shù)f(x)在(-2,+∞)上單調(diào)遞增,
所以有f(x1)-f(x2)=
ax1+1
x1+2
-
ax2+1
x2+2
=
(2a-1)(x1-x2)
(x1+2)(x2+2)
<0,
∵-2<x1<x2
∴x1-x2<0,x1+2>0,x2+2>0,
所以2a-1>0,即a>
1
2
,
所以實(shí)數(shù)a的取值范圍是(
1
2
,+∞)
點(diǎn)評(píng):本題主要考察函數(shù)單調(diào)性的定義,主要是第二問關(guān)于a的不等式的獲得.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)當(dāng)a∈[-2,
1
4
)
時(shí),求f(x)的最大值;
(2)設(shè)g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點(diǎn)的連線的斜率,否存在實(shí)數(shù)a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•海淀區(qū)二模)已知函數(shù)f(x)=a-2x的圖象過原點(diǎn),則不等式f(x)>
34
的解集為
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a|x|的圖象經(jīng)過點(diǎn)(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a•2x+b•3x,其中常數(shù)a,b滿足a•b≠0
(1)若a•b>0,判斷函數(shù)f(x)的單調(diào)性;
(2)若a=-3b,求f(x+1)>f(x)時(shí)的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a-2|x|+1(a≠0),定義函數(shù)F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 給出下列命題:①F(x)=|f(x)|; ②函數(shù)F(x)是奇函數(shù);③當(dāng)a<0時(shí),若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號(hào)是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案