如圖,是圓的內(nèi)接四邊形,,過點(diǎn)的圓的切線與的延長(zhǎng)線交于點(diǎn),證明:
(Ⅰ)
(II)

略.

解析試題分析:(Ⅰ)利用弦切角定理證明;(II)轉(zhuǎn)化為等積式,利用三角形相似來證明.
試題解析:證明:(Ⅰ)與圓相切于點(diǎn)
.  
,

.  
(Ⅱ),
,
是圓的內(nèi)接四邊形,
,
,
, 
,.             
考點(diǎn):幾何證明選講.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,A、B是兩圓的交點(diǎn),AC是小圓的直徑,D和E分別是CA和CB的延長(zhǎng)線與大圓的交點(diǎn),已知AC=4,BE=10,且BC=AD,求DE的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,、是圓的半徑,且,是半徑上一點(diǎn):延長(zhǎng)交圓于點(diǎn),過作圓的切線交的延長(zhǎng)線于點(diǎn).求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,△內(nèi)接于⊙,,直線切⊙于點(diǎn),弦,相交于點(diǎn).

(Ⅰ)求證:△≌△;
(Ⅱ)若,求長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,AB是圓O的直徑,C,D是圓O上兩點(diǎn),AC與BD相交于點(diǎn)E,GC,GD是圓O的切線,點(diǎn)F在DG的延長(zhǎng)線上,且。求證:
(Ⅰ)D、E、C、F四點(diǎn)共圓;       (Ⅱ)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知切⊙于點(diǎn)E,割線PBA交⊙于A、B兩點(diǎn),∠APE的平分線和AE、BE分別交于點(diǎn)C、D.

求證:
(Ⅰ);
(Ⅱ)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,AB是⊙O的直徑,C、E為⊙O上的點(diǎn),CA平分∠BAE,CF⊥AB, F是垂足,CD⊥AE,交AE延長(zhǎng)線于D.

(I)求證:DC是⊙O的切線;
(Ⅱ)求證:AF.FB=DE.DA.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知:如右圖,在等腰梯形ABCD中,AD∥BC,AB=DC,過點(diǎn)D作AC的平行線DE,交BA的延長(zhǎng)線于點(diǎn)E.求證:(1)△ABC≌△DCB   (2)DE·DC=AE·BD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖1,在△ABC中,點(diǎn)P為BC邊中點(diǎn),直線a繞頂點(diǎn)A旋轉(zhuǎn),若點(diǎn)B,P在直線a的異側(cè),BM⊥直線a于點(diǎn)M.CN⊥直線a于點(diǎn)N,連接PM,PN.

(1)延長(zhǎng)MP交CN于點(diǎn)E(如圖2).
①求證:△BPM≌△CPE;
②求證:PM=PN;
(2)若直線a繞點(diǎn)A旋轉(zhuǎn)到圖3的位置時(shí),點(diǎn)B,P在直線a的同側(cè),其它條件不變,此時(shí)PM=PN還成立嗎?若成立,請(qǐng)給予證明;若不成立,請(qǐng)說明理由;
(3)若直線a繞點(diǎn)A旋轉(zhuǎn)到與BC邊平行的位置時(shí),其它條件不變,請(qǐng)直接判斷四邊形MBCN的形狀及此時(shí)PM=PN還成立嗎?不必說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案