設(shè)直線與拋物線交于兩點(diǎn).
(1)求線段的長;(2)若拋物線的焦點(diǎn)為,求的值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
2 |
3 |
8 |
3 |
1 |
4 |
x2 |
a2 |
y2 |
b2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(09年長沙一中第八次月考理)(13分)已知直線L:x-y-3=0,拋物線C的頂點(diǎn)在原點(diǎn),焦點(diǎn)在軸正半軸上,S是拋物線C上任意一點(diǎn),T是直線L上任意一點(diǎn),若|ST|的最小值為d>0時(shí),點(diǎn)S的橫坐標(biāo)為2.
(1)求拋物線方程以及d的值;
(2)過拋物線C的對(duì)稱軸上任一點(diǎn)作直線與拋物線交于兩點(diǎn),點(diǎn)是點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn).設(shè)點(diǎn)分有向線段所成的比為,
證明:;
(3)設(shè)R為拋物線準(zhǔn)線上任意一點(diǎn),過R作拋物線的兩條切線,切點(diǎn)分別為M,N,直線MN是否恒過一定點(diǎn)?若恒過定點(diǎn),請(qǐng)指出定點(diǎn);若不恒過定點(diǎn),請(qǐng)說明理由。查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆浙江效實(shí)中學(xué)高二上期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
已知拋物線,為拋物線的焦點(diǎn),橢圓;
(1)若是與在第一象限的交點(diǎn),且,求實(shí)數(shù)的值;
(2)設(shè)直線與拋物線交于兩個(gè)不同的點(diǎn),與橢圓交于兩個(gè)
不同點(diǎn),中點(diǎn)為,中點(diǎn)為,若在以為直徑的圓上,且,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆廣東汕頭金山中學(xué)高二上期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分14分)設(shè)橢圓與拋物線的焦點(diǎn)均在軸上,的中心和的頂點(diǎn)均為原點(diǎn),從每條曲線上至少取兩個(gè)點(diǎn),將其坐標(biāo)記錄于下表中:
1)求,的標(biāo)準(zhǔn)方程, 并分別求出它們的離心率;
2)設(shè)直線與橢圓交于不同的兩點(diǎn),且(其中坐標(biāo)原點(diǎn)),請(qǐng)問是否存在這樣的直線過拋物線的焦點(diǎn)若存在,求出直線的方程;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012屆黑龍江省下學(xué)期高二期末考試數(shù)學(xué)試題(文科) 題型:解答題
設(shè)拋物線的焦點(diǎn)為F,準(zhǔn)線為,過點(diǎn)F作一直線與拋物線交于A、B兩點(diǎn),再分別過點(diǎn)A、B作拋物線的切線,這兩條切線的交點(diǎn)記為P.
(1)證明:直線PA與PB相互垂直,且點(diǎn)P在準(zhǔn)線上;
(2)是否存在常數(shù),使等式恒成立?若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com