【題目】如圖,橢圓的離心率為
,以橢圓
的上頂點(diǎn)
為圓心作圓,
,圓
與橢圓
在第一象限交于點(diǎn)
,在第二象限交于點(diǎn)
.
(1)求橢圓的方程;
(2)求的最小值,并求出此時(shí)圓
的方程;
(3)設(shè)點(diǎn)是橢圓
上異于
的一點(diǎn),且直線
分別與
軸交于點(diǎn)
為坐標(biāo)原點(diǎn),求證:
為定值.
【答案】(1);(2)
;(3)詳見(jiàn)解析.
【解析】試題分析:(1)依據(jù)題設(shè)條件求出參數(shù)即可;(2)依據(jù)題設(shè)條件及向量的數(shù)量積公式建立目標(biāo)函數(shù),再借助該函數(shù)取得最小值時(shí)求出圓的方程;(3)借助直線與橢圓的位置關(guān)系進(jìn)行分析推證:
試題解析:
(1) 由題意知, ,得
.
故橢圓的方程為
.
(2) 點(diǎn)
與點(diǎn)
關(guān)于
軸對(duì)稱,設(shè)
,由點(diǎn)
橢圓
上,則
,得
.由題意知,
,
當(dāng)
時(shí),
取得最小值
.此時(shí),
,故
.又點(diǎn)
在圓
上,代入圓的方程,得
.
故圓的方程為
.
(3)設(shè),則
的方程為
.令
,得
.同理可得,
. 故
. ①
都在橢圓
上,
,代入①得,
.即得
為定值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:在四棱錐P﹣ABCD中,底面ABCD是菱形,∠BAD=60°,AB=2,PA=3,PA⊥底面ABCD,E是PC中點(diǎn),F是AB中點(diǎn).
(Ⅰ)求證:BE∥平面PDF;
(Ⅱ)求直線PD與平面PFB所成角的正切值;
(Ⅲ)求三棱錐P﹣DEF的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分12分)已知拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn)
,對(duì)稱軸為
軸,焦點(diǎn)為
,拋物線上一點(diǎn)
的橫坐標(biāo)為
,且
.
(Ⅰ)求此拋物線的方程;
(Ⅱ)過(guò)點(diǎn)做直線
交拋物線
于
兩點(diǎn),求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】輪船從某港口將一些物品送到正航行的輪船
上,在輪船
出發(fā)時(shí),輪船
位于港口
北偏西
且與
相距20海里的
處,并正以30海里的航速沿正東方向勻速行駛,假設(shè)輪船
沿直線方向以
海里/小時(shí)的航速勻速行駛,經(jīng)過(guò)
小時(shí)與輪船
相遇.
(1)若使相遇時(shí)輪船航距最短,則輪船
的航行速度大小應(yīng)為多少?
(2)假設(shè)輪船的最高航速只能達(dá)到30海里/小時(shí),則輪船
以多大速度及什么航行方向才能在最短時(shí)間與輪船
相遇,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某大理石工廠初期花費(fèi)98萬(wàn)元購(gòu)買磨大理石刀具,第一年需要各種費(fèi)用12萬(wàn)元,從第二年起,每年所需費(fèi)用比上一年增加4萬(wàn)元,該大理石加工廠每年總收入50萬(wàn)元.
(1)到第幾年末總利潤(rùn)最大,最大值是多少?
(2)到第幾年末年平均利潤(rùn)最大,最大值是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓心為 的圓過(guò)點(diǎn)
和
,且圓心在直線
:
上.
(1)求圓心為的圓的標(biāo)準(zhǔn)方程;
(2)過(guò)點(diǎn) 作圓的切線,求切線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義在[﹣1,1]上的奇函數(shù)f(x),已知當(dāng)x∈[﹣1,0]時(shí)的解析式f(x)= ﹣
(a∈R).
(1)寫出f(x)在[0,1]上的解析式;
(2)求f(x)在[0,1]上的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓與圓
(1)若直線與圓
相交于
兩個(gè)不同點(diǎn),求
的最小值;
(2)直線上是否存在點(diǎn)
,滿足經(jīng)過(guò)點(diǎn)
有無(wú)數(shù)對(duì)互相垂直的直線
和
,它們分別與圓
和圓
相交,并且直線
被圓
所截得的弦長(zhǎng)等于直線
被圓
所截得的弦長(zhǎng)?若存在,求出點(diǎn)
的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某廠擬生產(chǎn)甲、乙兩種適銷產(chǎn)品,每件銷售收入分別為3萬(wàn)元、2萬(wàn)元,甲、乙產(chǎn)品都需要在兩種設(shè)備上加工,在每臺(tái)
上加工1件甲所需工時(shí)分別是1
、2
,加工1件乙所需工時(shí)分別為2
、1
,
兩種設(shè)備每月有效使用臺(tái)時(shí)數(shù)分別為400
和500
,如何安排生產(chǎn)可使收入最大?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com