解:(1)1.1
0-0.5
-2+lg25+2lg2=1-4+2(lg5+lg2)=-3+2=-1.
(2)log
2(4
6×2
5)+lg
+2log
510+log
50.25
=log
2(2
12×2
5)+lg10
-2+log
5100+log
50.25
=log
22
17+(-2)+log
5(100×0.25)
=17-2+2=17.
(3)sin
+cos
+tan(-
)
=sin(4π+
)+cos(6π+
)-tan(5π+
)
=sin
+cos
-tan
=sin
-cos
-tan
=
+
-1=0.
分析:(1)根據(jù)指數(shù)冪和對(duì)數(shù)的運(yùn)算性質(zhì)化簡要求的式子,求出結(jié)果.
(2)根據(jù)對(duì)數(shù)的運(yùn)算性質(zhì)化簡要求的式子,運(yùn)算求得結(jié)果.
(3)利用誘導(dǎo)公式把任意角的三角函數(shù)化為(0,π)上的角的三角函數(shù),化簡得到結(jié)果.
點(diǎn)評(píng):本題主要考查對(duì)數(shù)的運(yùn)算性質(zhì),誘導(dǎo)公式的應(yīng)用,式子的變形,是解題的關(guān)鍵,屬于中檔題.