分析:(Ⅰ)依題意,f′(1)=0,從而可求得a的值;
(Ⅱ)f′(x)=1-
,分①a≤0時(shí)②a>0討論,可知f(x)在∈(-∞,lna)上單調(diào)遞減,在(lna,+∞)上單調(diào)遞增,從而可求其極值;
(Ⅲ)令g(x)=f(x)-(kx-1)=(1-k)x+
,則直線l:y=kx-1與曲線y=f(x)沒(méi)有公共點(diǎn)?方程g(x)=0在R上沒(méi)有實(shí)數(shù)解,分k>1與k≤1討論即可得答案.
解答:解:(Ⅰ)由f(x)=x-1+
,得f′(x)=1-
,
又曲線y=f(x)在點(diǎn)(1,f(1))處的切線平行于x軸,
∴f′(1)=0,即1-
=0,解得a=e.
(Ⅱ)f′(x)=1-
,
①當(dāng)a≤0時(shí),f′(x)>0,f(x)為(-∞,+∞)上的增函數(shù),所以f(x)無(wú)極值;
②當(dāng)a>0時(shí),令f′(x)=0,得e
x=a,x=lna,
x∈(-∞,lna),f′(x)<0;x∈(lna,+∞),f′(x)>0;
∴f(x)在∈(-∞,lna)上單調(diào)遞減,在(lna,+∞)上單調(diào)遞增,
故f(x)在x=lna處取到極小值,且極小值為f(lna)=lna,無(wú)極大值.
綜上,當(dāng)當(dāng)a≤0時(shí),f(x)無(wú)極值;當(dāng)a>0時(shí),f(x)在x=lna處取到極小值lna,無(wú)極大值.
(Ⅲ)當(dāng)a=1時(shí),f(x)=x-1+
,令g(x)=f(x)-(kx-1)=(1-k)x+
,
則直線l:y=kx-1與曲線y=f(x)沒(méi)有公共點(diǎn),
等價(jià)于方程g(x)=0在R上沒(méi)有實(shí)數(shù)解.
假設(shè)k>1,此時(shí)g(0)=1>0,g(
)=-1+
<0,
又函數(shù)g(x)的圖象連續(xù)不斷,由零點(diǎn)存在定理可知g(x)=0在R上至少有一解,
與“方程g(x)=0在R上沒(méi)有實(shí)數(shù)解”矛盾,故k≤1.
又k=1時(shí),g(x)=
>0,知方程g(x)=0在R上沒(méi)有實(shí)數(shù)解,
所以k的最大值為1.