【題目】若 , , 為同一平面內(nèi)互不共線的三個單位向量,并滿足 + + = ,且向量 =x + +(x+ ) (x∈R,x≠0,n∈N+).
(1)求 與 所成角的大小;
(2)記f(x)=| |,試求f(x)的單調(diào)區(qū)間及最小值.
【答案】
(1)解:依題設(shè):| |=|| =| |=1,且 + =﹣ ( + )2=(﹣ )2,化簡得:
=﹣ cos< , >=﹣ ,又< , >∈[0,π]< , >= .
(2)解:由(1)易知: = = =﹣ ,
故由f(x)=| |= ,
將其展開整理得:f(x)= (x∈R,x≠0,n∈N+).①x>0時,對u(x)=x2+( )2﹣n,求導并整理得:u′(x)= .
則由u′(x)>0x> ,
且由u′(x)<00<x< .即f(x)的增區(qū)間為( ,+∞),減區(qū)間為(0, ).
②x<0時,因f(x)為偶函數(shù),由圖象的對稱性知:f(x)的增區(qū)間為(﹣ ,0),減區(qū)間為(﹣∞,﹣ ).
綜上:f(x)的增區(qū)間為 (﹣ ,0)與 ( ,+∞),f(x)的減區(qū)間為(﹣∞,﹣ ) 和 (0, ).
再由均值不等式易求得:|x|= 時,f(x)min= .
【解析】(1)首先利用函數(shù)的數(shù)量積求出向量的夾角.(2)首先把向量的模長轉(zhuǎn)化為求向量的數(shù)量級,進一步利用導數(shù)求出單調(diào)區(qū)間,最后確定最值.
【考點精析】掌握函數(shù)單調(diào)性的判斷方法和函數(shù)的最值及其幾何意義是解答本題的根本,需要知道單調(diào)性的判定法:①設(shè)x1,x2是所研究區(qū)間內(nèi)任兩個自變量,且x1<x2;②判定f(x1)與f(x2)的大;③作差比較或作商比較;利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的最大(小)值;利用圖象求函數(shù)的最大(小)值;利用函數(shù)單調(diào)性的判斷函數(shù)的最大(小)值.
科目:高中數(shù)學 來源: 題型:
【題目】對一批產(chǎn)品的長度(單位:毫米)進行抽樣檢測,樣本容量為400,右圖為檢測結(jié)果的頻率分布直方圖,根據(jù)產(chǎn)品標準,單件產(chǎn)品長度在區(qū)間[25,30)的為一等品,在區(qū)間[20,25)和[30,35)的為二等品,其余均為三等品,則樣本中三等品的件數(shù)為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知等差數(shù)列{an}是有窮數(shù)列,且a1∈R,公差d=2,記{an}的所有項之和為S,若a12+S≤96,則數(shù)列{an}至多有項.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】記等比數(shù)列{an}前n項和為Sn , 已知a1+a3=30,3S1 , 2S2 , S3成等差數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}滿足b1=3,bn+1﹣3bn=3an , 求數(shù)列{bn}的前n項和Bn;
(3)刪除數(shù)列{an}中的第3項,第6項,第9項,…,第3n項,余下的項按原來的順序組成一個新數(shù)列,記為{cn},{cn}的前n項和為Tn , 若對任意n∈N* , 都有 >a,試求實數(shù)a的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線C的頂點在原點,焦點在x軸上,且拋物線上有一點P(4,m)到焦點的距離為6.
(Ⅰ)求拋物線C的方程;
(Ⅱ)若拋物線C與直線y=kx﹣2相交于不同的兩點A、B,且AB中點橫坐標為2,求k的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C的兩個焦點坐標分別是F1(﹣ ,0)、F2( ,0),并且經(jīng)過點P( ,﹣ ).
(1)求橢圓C的方程;
(2)若直線l與圓O:x2+y2=1相切,并與橢圓C交于不同的兩點A、B.當 =λ,且滿足 ≤λ≤ 時,求△AOB面積S的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)據(jù)x1 , x2 , x3 , …,x100是杭州市100個普通職工的2016年10月份的收入(均不超過2萬元),設(shè)這100個數(shù)據(jù)的中位數(shù)為x,平均數(shù)為y,方差為z,如果再加上馬云2016年10月份的收入x101(約100億元),則相對于x、y、z,這101個月收入數(shù)據(jù)( )
A.平均數(shù)可能不變,中位數(shù)可能不變,方差可能不變
B.平均數(shù)大大增大,中位數(shù)可能不變,方差也不變
C.平均數(shù)大大增大,中位數(shù)一定變大,方差可能不變
D.平均數(shù)大大增大,中位數(shù)可能不變,方差變大
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖(a),在直角梯形ABCD中,∠ADC=90°,CD∥AB,AB=8,AD=CD=4,將△ADC沿AC折起,使平面ADC⊥平面ABC,得到幾何體D﹣ABC,如圖(b)所示.
(1)求證:BC⊥平面ACD;
(2)求幾何體D﹣ABC的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某種產(chǎn)品的廣告費用支出x萬元與銷售額y萬元之間有如下的對應(yīng)數(shù)據(jù):
x | 2 | 4 | 5 | 6 | 8 |
y | 30 | 40 | 60 | 50 | 70 |
(1)畫出散點圖;
(2)求回歸直線方程;
(3)據(jù)此估計廣告費用為12萬元時,銷售收入y的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com