一個質(zhì)地均勻的正四面體(側(cè)棱長與底面邊長相等的正三棱錐)骰子,四個面上標(biāo)有1、2、3、4這四個數(shù)字,拋擲這顆正四面體骰子,觀察拋擲后能看到的數(shù)字.
(1)若拋擲一次,求能看到的三個面上數(shù)字之和大于6的概率;
(2)若拋擲兩次,求兩次朝下面上的數(shù)字之積大于7的概率;
(3)若拋擲兩次,以第一次朝下面上的數(shù)字為橫坐標(biāo)為a,第二次朝下面上的數(shù)字為縱坐標(biāo)為b,求點(a,b)落在直線x-y=1下方的概率.
分析:(1)由題意知本題是一個古典概型,試驗包含的所有事件是拋擲一次看到的三個面上的數(shù)字共有C43情況,三個面上的數(shù)字之和小于等于6只有一種情形,滿足條件能看到的三個面上數(shù)字之和大于6的有4-1種結(jié)果,根據(jù)公式得到結(jié)果.
(2)由題意知本題是一個古典概型,試驗包含的所有事件由分步計數(shù)原理知拋擲兩次出現(xiàn)的朝下面的數(shù)字共有4×4種情況,
而滿足條件的可以列舉出來共6種情況,根據(jù)古典概型公式得到結(jié)果.
(3)由題意知本題是一個古典概型,試驗包含的所有事件由分步計數(shù)原理知拋擲兩次出現(xiàn)的朝下面的數(shù)字共有4×4種情況,
而滿足條件點(a,b)落在直線x-y=1下方共有三種情況,根據(jù)古典概型公式得到結(jié)果.
解答:解:(1)由題意知拋擲一次看到的三個面上的數(shù)字共有C43=4情況,
其中三個面上的數(shù)字之和小于等于6只有(1,2,3)這一種情形,
∴能看到的三個面上數(shù)字之和大于6的有4-1=3種結(jié)果,
∴所求事件的概率為
3
4

(2)∵由分步計數(shù)原理知拋擲兩次出現(xiàn)的朝下面的數(shù)字共有4×4=16種情況,
其中兩次朝下的數(shù)字之積大于7有(2,4),(3,3),(3,4),
(4,2),(4,3),(4,4)共6種情況,
∴所求事件的概率P=
6
16
=
3
8

(3)∵由分步計數(shù)原理知拋擲兩次出現(xiàn)的朝下面的數(shù)字共有4×4=16種情況,
其中點(a,b)落在直線x-y=1下方共有(3,1),(4,1),(4,2)三種情況,
∴所求事件的概率為
3
16
點評:本題主要考查古典概型,古典概型要求能夠列舉出所有事件和發(fā)生事件的個數(shù),本題可以列舉出所有事件,概率問題同其他的知識點結(jié)合在一起,實際上是以概率問題為載體,主要考查的是另一個知識點.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

一個質(zhì)地均勻的正四面體(側(cè)棱長與底面邊長相等的正三棱錐)骰子四個面上分別標(biāo)有1,2,3,4這四個數(shù)字,拋擲這顆正四面體骰子,觀察拋擲后能看到的數(shù)字.若連續(xù)拋擲兩次,兩次朝下面上的數(shù)字之積大于6的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個質(zhì)地均勻的正四面體玩具的四個面上分別標(biāo)有1,2,3,4這四個數(shù)字.若連續(xù)兩次拋擲這個玩具,則兩次向下的面上的數(shù)字之積為偶數(shù)的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個質(zhì)地均勻的正四面體骰子四個面上分別標(biāo)有1,2,3,4四個數(shù)字,若連續(xù)拋擲這顆骰子兩次,其著地的一面上的數(shù)字之積大于6的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

把圓周4等分,A是其中一個分點,動點P在四個分點上按逆時針方向前進.投擲一個質(zhì)地均勻的正四面體,它的四個面上分別寫著1,2,3,4四個數(shù)字,P從A點出發(fā),按照正四面體底面上所投擲的點數(shù)前進(數(shù)字為n就前進n個分點),轉(zhuǎn)一周之前繼續(xù)投擲.
(Ⅰ)求點P恰好返回到A點的概率:
(Ⅱ)在點P轉(zhuǎn)一周能返回A點的所有結(jié)果中,用隨機變量ζ表示點P返回A點時的投擲次數(shù),求ζ的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•房山區(qū)二模)一個質(zhì)地均勻的正方體的六個面上分別標(biāo)有數(shù)字0,1,2,3,4,5,一個質(zhì)地均勻的正四面體的四個面上分別標(biāo)有數(shù)字1,2,3,4.將這個正方體和正四面體同時拋擲一次,正方體正面向上的數(shù)字為a,正四面體的三個側(cè)面上的數(shù)字之和為b.
(Ⅰ)求事件b=3a的概率;
(Ⅱ)求事件“點(a,b)滿足a2+(b-5)2≤9”的概率.

查看答案和解析>>

同步練習(xí)冊答案