【題目】如圖,在四棱錐O﹣ABCD中,底面ABCD四邊長為1的菱形,∠ABC=,OA⊥底面ABCD,OA=2,M為OA的中點,N為BC的中點.
(1)證明:直線MN∥平面OCD;
(2)求異面直線AB與MD所成角的大�。�
(3)求點B到平面OCD的距離.
【答案】(1) (2) .(3)
【解析】
試題方法一:(1)取OB中點E,連接ME,NE,證明平面MNE∥平面OCD,方法是兩個平面內(nèi)相交直線互相平行得到,從而的到MN∥平面OCD;
(2)∵CD∥AB,∴∠MDC為異面直線AB與MD所成的角(或其補角)作AP⊥CD于P,連接MP
∵OA⊥平面ABCD,∴CD⊥MP菱形的對角相等得到∠ABC=∠ADC=,
利用菱形邊長等于1得到DP=,而MD利用勾股定理求得等于
,在直角三角形中,利用三角函數(shù)定義求出即可.
(3)AB∥平面OCD,∴點A和點B到平面OCD的距離相等,連接OP,過點A作AQ⊥OP于點Q,
∵AP⊥CD,OA⊥CD,∴CD⊥平面OAP,∴AQ⊥CD,
又∵AQ⊥OP,∴AQ⊥平面OCD,線段AQ的長就是點A到平面OCD的距離,求出距離可得.
方法二:(1)分別以AB,AP,AO所在直線為x,y,z軸建立坐標(biāo)系,分別表示出A,B,O,M,N的坐標(biāo),
求出,
,
的坐標(biāo)表示.設(shè)平面OCD的法向量為
=(x,y,z),則
,
解得,∴MN∥平面OCD
(2)設(shè)AB與MD所成的角為θ,表示出和
,利用a×b=|a||b|cosα求出叫即可.
(3)設(shè)點B到平面OCD的距離為d,則d為在向量
上的投影的絕對值,由
得.所以點B到平面OCD的距離為
.
解:方法一(綜合法)
(1)取OB中點E,連接ME,NE
∵ME∥AB,AB∥CD,∴ME∥CD
又∵NE∥OC,∴平面MNE∥平面OCD∴MN∥平面OCD
(2)∵CD∥AB,∴∠MDC為異面直線AB與MD所成的角(或其補角)
作AP⊥CD于P,連接MP
∵OA⊥平面ABCD,∴CD⊥MP
∵,∴
,
,
∴
所以AB與MD所成角的大小為
(3)∵AB∥平面OCD,
∴點A和點B到平面OCD的距離相等,連接OP,過點A作AQ⊥OP于點Q,
∵AP⊥CD,OA⊥CD,
∴CD⊥平面OAP,∴AQ⊥CD.
又∵AQ⊥OP,∴AQ⊥平面OCD,線段AQ的長就是點A到平面OCD的距離,
∵,
,
∴,所以點B到平面OCD的距離為
.
方法二(向量法)
作AP⊥CD于點P,如圖,分別以AB,AP,AO所在直線為x,y,z軸建立坐標(biāo)系:
A(0,0,0),B(1,0,0),,
,
O(0,0,2),M(0,0,1),
(1),
,
設(shè)平面OCD的法向量為n=(x,y,z),則×
=0,
×
=0
即
取,解得
∵×
=(
,
,﹣1)×(0,4,
)=0,
∴MN∥平面OCD.
(2)設(shè)AB與MD所成的角為θ,
∵
∴
∴,AB與MD所成角的大小為
.
(3)設(shè)點B到平面OCD的距離為d,則d為在向量
=(0,4,
)上的投影的絕對值,
由,得d=
=
所以點B到平面OCD的距離為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知以為首項的數(shù)列
滿足:
(1)當(dāng),
時,求數(shù)列
的通項公式;
(2)當(dāng),
時,試用
表示數(shù)列
前100項的和
;
(3)當(dāng)(
是正整數(shù)),
,正整數(shù)
時,判斷數(shù)列
,
,
,
是否成等比數(shù)列?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)集由實數(shù)構(gòu)成,且滿足:若
(
且
),則
.
(1)若,試證明
中還有另外兩個元素;
(2)集合是否為雙元素集合,并說明理由;
(3)若中元素個數(shù)不超過8個,所有元素的和為
,且
中有一個元素的平方等于所有元素的積,求集合
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于任意的,若數(shù)列
同時滿足下列兩個條件,則稱數(shù)列
具有“性質(zhì)m”:
;
存在實數(shù)M,使得
成立.
數(shù)列
、
中,
、
(
),判斷
、
是否具有“性質(zhì)m”;
若各項為正數(shù)的等比數(shù)列
的前n項和為
,且
,
,求證:數(shù)列
具有“性質(zhì)m”;
數(shù)列
的通項公式
對于任意
,數(shù)列
具有“性質(zhì)m”,且對滿足條件的M的最小值
,求整數(shù)t的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在邊長為2的菱形中,
,將菱形
沿對角線
對折,使二面角
的余弦值為
,則所得三棱錐
的內(nèi)切球的表面積為( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校共有教職工900人,分成三個批次進行繼續(xù)教育培訓(xùn),在三個批次中男、女教職工人數(shù)如下表所示.已知在全體教職工中隨機抽取一名,抽到第二批次中女職工的概率是0.16.
第一批次 | 第二批次 | 第三批次 | |
女教職工 | 196 | ||
男教職工 | 204 | 156 |
(1)求的值;
(2)現(xiàn)用分層抽樣的方法在全體教職工中抽取54名做培訓(xùn)效果的調(diào)查,問應(yīng)在第三批次中抽取教職工多少名?
(3)已知,
,求第三批次中女教職工比男教職工多的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在三棱錐 中,底面
是邊長為 2 的正三角形,頂點
在底面
上的射影為
的中心,若
為
的中點,且直線
與底面
所成角的正切值為
,則三棱錐
外接球的表面積為( )
A. B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com