【題目】已知點(diǎn)和動(dòng)點(diǎn),以線段為直徑的圓內(nèi)切于圓.

(1)求動(dòng)點(diǎn)的軌跡方程;

(2)已知點(diǎn), ,經(jīng)過(guò)點(diǎn)的直線與動(dòng)點(diǎn)的軌跡交于, 兩點(diǎn),求證:直線與直線的斜率之和為定值.

【答案】(1);(2)見(jiàn)解析.

【解析】試題分析:

1設(shè)以線段為直徑的圓的圓心為,取,借助幾何知識(shí)分析可得動(dòng)點(diǎn)的軌跡是以為焦點(diǎn),長(zhǎng)軸長(zhǎng)為4的橢圓,根據(jù)待定系數(shù)法可得動(dòng)點(diǎn)的軌跡方程為.(2)①當(dāng)直線垂直于軸時(shí),不合題意;②當(dāng)直線的斜率存在時(shí),設(shè)直線的方程為,與橢圓方程聯(lián)立消元后可得二次方程,根據(jù)二次方程根與系數(shù)的關(guān)系及斜率公式可得,為定值.

試題解析:

(1)如圖,設(shè)以線段為直徑的圓的圓心為,取.

依題意,圓內(nèi)切于圓,設(shè)切點(diǎn)為,則 , 三點(diǎn)共線,

的中點(diǎn), 中點(diǎn),

.

,

∴動(dòng)點(diǎn)的軌跡是以為焦點(diǎn),長(zhǎng)軸長(zhǎng)為4的橢圓,

設(shè)其方程為,

, ,

,

,

動(dòng)點(diǎn)的軌跡方程為.

2①當(dāng)直線垂直于軸時(shí),直線的方程為,此時(shí)直線與橢圓相切,與題意不符.

②當(dāng)直線的斜率存在時(shí),設(shè)直線的方程為.

消去y整理得.

∵直線與橢圓交于, 兩點(diǎn),

解得

設(shè), ,

(定值)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】三棱錐P-A BC的四個(gè)頂點(diǎn)都在球D的表面上,PA平面ABC,ABBC,PA =3,AB=BC=2,則球O的表面積為

A13π B17π C52π D68π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】己知橢圓C:的左右焦點(diǎn)分別為,,直線l:與橢圓C交于A,B兩點(diǎn)為坐標(biāo)原點(diǎn).

若直線l過(guò)點(diǎn),且,求直線l的方程;

若以AB為直徑的圓過(guò)點(diǎn)O,點(diǎn)P是線段AB上的點(diǎn),滿(mǎn)足,求點(diǎn)P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f1(x)=Asin(ωxφ)(A>0,ω>0,|φ|<)的一段圖象過(guò)點(diǎn)(0,1),如圖所示.

(1)求函數(shù)f1(x)的表達(dá)式;

(2)將函數(shù)yf1(x)的圖象向右平移個(gè)單位,得函數(shù)yf2(x)的圖象,求yf2(x)的最大值,并求出此時(shí)自變量x的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知橢圓,橢圓的長(zhǎng)軸長(zhǎng)為8,離心率為

求橢圓方程;

橢圓內(nèi)接四邊形ABCD的對(duì)角線交于原點(diǎn),且,求四邊形ABCD周長(zhǎng)的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正四棱錐中,,分別是,的中點(diǎn),動(dòng)點(diǎn)在線段上運(yùn)動(dòng)時(shí),下列四個(gè)結(jié)論中恒成立的為( .

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△ABC的兩個(gè)頂點(diǎn)A,B的坐標(biāo)分別為(﹣2,0),(2,0),且AC,BC所在直線的斜率之積等于

(1)求頂點(diǎn)C的軌跡方程;

(2)若斜率為1的直線與頂點(diǎn)C的軌跡交于M,N兩點(diǎn),且|MN|=,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中石化集團(tuán)獲得了某地深海油田區(qū)塊的開(kāi)采權(quán),集團(tuán)在該地區(qū)隨機(jī)初步勘探了部分兒口井,取得了地質(zhì)資料.進(jìn)入全面勘探時(shí)期后,集團(tuán)按網(wǎng)絡(luò)點(diǎn)來(lái)布置井位進(jìn)行全面勘探. 由于勘探一口井的費(fèi)用很高,如果新設(shè)計(jì)的井位與原有井位重合或接近,便利用舊井的地質(zhì)資料,不必打這口新井,以節(jié)約勘探費(fèi)用.勘探初期數(shù)據(jù)資料見(jiàn)如表:

(Ⅰ)1~6號(hào)舊井位置線性分布,借助前5組數(shù)據(jù)求得回歸直線方程為,求,并估計(jì)的預(yù)報(bào)值;

(Ⅱ)現(xiàn)準(zhǔn)備勘探新井,若通過(guò)1、3、5、7號(hào)井計(jì)算出的的值(精確到0.01)相比于(Ⅰ)中的值之差不超過(guò)10%,則使用位置最接近的已有舊井,否則在新位置打開(kāi),請(qǐng)判斷可否使用舊井?

(參考公式和計(jì)算結(jié)果:

(Ⅲ)設(shè)出油量與勘探深度的比值不低于20的勘探并稱(chēng)為優(yōu)質(zhì)井,那么在原有井號(hào)1~6的出油量不低于50L的井中任意勘探3口井,求恰好2口是優(yōu)質(zhì)井的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(Ⅰ)若曲線與曲線在它們的某個(gè)交點(diǎn)處具有公共切線,求的值;

(Ⅱ)若存在實(shí)數(shù)使不等式的解集為,求實(shí)數(shù)的取值范圍

(Ⅲ)若方程有三個(gè)不同的解,且它們可以構(gòu)成等差數(shù)列,寫(xiě)出實(shí)數(shù)的值(只需寫(xiě)出結(jié)果).

查看答案和解析>>

同步練習(xí)冊(cè)答案